-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
46 lines (33 loc) · 1.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from flask import Flask, request, jsonify, render_template
import os
from flask_cors import CORS, cross_origin
from ChestCancerClassifier.utils.common import decodeImage
from ChestCancerClassifier.pipeline.prediction import PredictionPipeline
os.putenv("LANG", "en_US.UTF-8")
os.putenv("LC_ALL", "en_US.UTF-8")
app = Flask(__name__)
CORS(app)
class ClientApp:
def __init__(self):
self.filename = "inputImage.jpg"
self.classifier = PredictionPipeline(self.filename)
@app.route("/", methods=["GET"])
@cross_origin()
def home():
return render_template("index.html")
@app.route("/train", methods=["GET", "POST"])
@cross_origin()
def trainRoute():
# os.system("python main.py")
os.system("dvc repro")
return "Training done successfully!"
@app.route("/predict", methods=["POST"])
@cross_origin()
def predictRoute():
image = request.json["image"]
decodeImage(image, clApp.filename)
result = clApp.classifier.predict()
return jsonify(result)
if __name__ == "__main__":
clApp = ClientApp()
app.run(host="0.0.0.0", port=5000) # for AWS