Skip to content

Online Filtering Training Samples for Robust Visual Tracking (ACM MM2020)

Notifications You must be signed in to change notification settings

zj5559/MetricNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MetricNet

Online Filtering Training Samples for Robust Visual Tracking (ACM MM2020)

Paper link

Results

OTB2015 Success Precision
MDNet 0.671 0.904
MDNet+MetricNet 0.681 0.910
ECO 0.666 0.903
ECO+MetricNet 0.678 0.926
ATOM 0.665 0.870
ATOM+MetricNet 0.675 0.881
UAV123 Success Precision
MDNet 0.540 0.754
MDNet+MetricNet 0.561 0.789
ECO 0.533 0.764
ECO+MetricNet 0.546 0.786
ATOM 0.621 0.832
ATOM+MetricNet 0.650 0.866
LaSOT Success Norm Precision
MDNet 0.390 0.430
MDNet+MetricNet 0.443 0.523
ECO 0.371 0.431
ECO+MetricNet 0.419 0.501
ATOM 0.503 0.574
ATOM+MetricNet 0.535 0.614

Requirments

python 3.7
pytorch
ubuntu 16.04 + cuda-9.0

Installation

The pretrained models are also downloaded.

bash install.sh conda_install_path metricnet

Train

Prepare dataset (LaSOT)

cd Train
python prepare_data.py

Train MetricNet

python train.py

Eval

Integrate MetricNet into MDNet

cd MDNet_MetricNet
python metric_tracking.py

Integrate MetricNet into ECO/ATOM

cd pytracking_MetricNet/pytracking
python run_tracker.py

About

Online Filtering Training Samples for Robust Visual Tracking (ACM MM2020)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published