Skip to content

ziwei7437/bert_ner

 
 

Repository files navigation

PyTorch Implementation of NER with pretrained Bert

I know that you know BERT. In the great paper, the authors claim that the pretrained models do great in NER. It's even impressive, allowing for the fact that they don't use any prediction-conditioned algorithms like CRFs. We try to reproduce the result in a simple manner.

Requirements

  • python>=3.6 (Let's move on to python 3 if you still use python 2)
  • pytorch==1.0
  • pytorch_pretrained_bert==0.6.1
  • numpy>=1.15.4

Training & Evaluating

  • STEP 1. Run the command below to download conll 2003 NER dataset.
bash download.sh

It should be extracted to conll2003/ folder automatically.

  • STEP 2a. Run the command if you want to do the feature-based approach.
python train.py --logdir checkpoints/feature --batch_size 128 --top_rnns --lr 1e-4 --n_epochs 30
  • STEP 2b. Run the command if you want to do the fine-tuning approach.
python train.py --logdir checkpoints/finetuning --finetuning --batch_size 32 --lr 5e-5 --n_epochs 3

Results in the paper

  • Feature-based approach

  • Fine-tuning

Results

  • F1 scores on conll2003 valid dataset are reported.
  • You can check the classification outputs in checkpoints.
epoch feature-based fine-tuning
1 0.2 0.95
2 0.75 0.95
3 0.84 0.96
4 0.88
5 0.89
6 0.90
7 0.90
8 0.91
9 0.91
10 0.92
11 0.92
12 0.93
13 0.93
14 0.93
15 0.93
16 0.92
17 0.93
18 0.93
19 0.93
20 0.93
21 0.94
22 0.94
23 0.93
24 0.93
25 0.93
26 0.93
27 0.93
28 0.93
29 0.94
30 0.93

About

Ner with Bert

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.2%
  • Shell 4.8%