forked from doserjef/Doser_et_al_2024_GEB
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
36 changed files
with
3 additions
and
2,611 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,10 +1,8 @@ | ||
# Guidelines for the use of spatially-varying coefficients in species distribution models | ||
|
||
### In Review | ||
|
||
### Jeffrey W. Doser, Marc Kéry, Sarah P. Saunders, Andrew O. Finley, Brooke L. Bateman, Joanna Grand, Shannon Reault, Aaron S. Weed, Elise F. Zipkin | ||
|
||
### spOccupancy Package [Website](https://www.jeffdoser.com/files/spoccupancy-web/) and [Repository](https://github.com/doserjef/spOccupancy/) | ||
### Global Ecology and Biogeography | ||
|
||
### Please contact the first author for questions about the code or data used in the manuscript: Jeffrey W. Doser ([email protected]) | ||
|
||
|
@@ -14,7 +12,7 @@ | |
|
||
### Aim | ||
|
||
Species distribution models (SDMs) are increasingly applied across macroscales using detection-nondetection data. Such models typically assume that a single set of regression coefficients can adequately describe species-environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially-varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially-varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks. | ||
Species distribution models (SDMs) are increasingly applied across macroscales using detection-nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species-environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially-varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially-varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks. | ||
|
||
### Innovation | ||
|
||
|
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.