Implementations of neural network models with torch (>=1.0)
See also implementations with TesorFlow 2.0 here.
- PyTorch >= 1.0
$ pip install torch torchvision
- Logistic Regression
- MLP
- LeNet
- ResNet (ResNet34, ResNet50)
- Encoder-Decoder (LSTM)
- Encoder-Decoder (Attention)
- Transformer
- Deep Q-Network
- Variational Autoencoder
- Generative Adversarial Network
- Conditional GAN
models/
├── conditonal_gan_mnist.py
├── dqn_cartpole.py
├── encoder_decoder_attention.py
├── encoder_decoder_lstm.py
├── gan_fashion_mnist.py
├── lenet_mnist.py
├── logistic_regression_mnist.py
├── mlp_mnist.py
├── resnet34_fashion_mnist.py
├── resnet50_fashion_mnist.py
├── transformer.py
├── vae_fashion_mnist.py
│
└── layers/
├── Attention.py
├── DotProductAttention.py
├── Flatten.py
├── GlobalAvgPool2d.py
├── MultiHeadAttention.py
├── PositionalEncoding.py
└── ScaledDotProductAttention.py