Paper has been accepted by IJCAI2020.
PyTorch code demo for "Trained Rank Pruning for Efficient Deep Neural Networks"
Our code is built based on bearpaw
What's in this repo so far:
- TRP code for CIFAR-10 experiments
- Nuclear regularization code for CIFAR-10 experiments
- torch
- numpy
- matplotlib
- progress
optional arguments:
-a model_name
--depth number layers
--epoths training epochs
-c path to save checkpoints
--gpu-id specifiy using GPU or not
--nuclear-weight nuclear regularization weight (if not set, nuclear reglularization is not used)
--trp boolean value, set to enable TRP training
--type the decompsition type 'NC','VH','ND'
Training ResNet-20 baseline:
python cifar-TRP.py -a resnet --depth 20 --epochs 164 --schedule 81 122 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/cifar10/resnet-20
Training ResNet-20 with nuclear norm:
python cifar-TRP.py -a resnet --depth 20 --epochs 164 --schedule 81 122 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/cifar10/resnet-20 --nuclear-weight 0.0003
Training ResNet-20 with TRP and nuclear norm:
python cifar-TRP.py -a resnet --depth 20 --epochs 164 --schedule 81 122 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/cifar10/resnet-20 --nuclear-weight 0.0003 --trp --type NC
Decompose the trained model without retraining:
python cifar-nuclear-regularization.py.py -a resnet --depth 20 --resume checkpoints/cifar10/resnet-20/model_best.pth.tar --evaluate --type NC
Decompose the trained model with retraining:
python cifar-nuclear-regularization.py.py -a resnet --depth 20 --resume checkpoints/cifar10/resnet-20/model_best.pth.tar --evaluate --type NC --retrain
During decomposition, TRP using value threshold(very small value to truncate singular values) based strategy because the trained model is in low-rank format. Other methods including Channel or spatial-wise decomposition baseline methods use energy threshold.
- Results on CIFAR-10(without decomposing the final FC):
Network | Method | Scheme | # Params | FLOPs | Acc |
---|---|---|---|---|---|
Resnet20 | Origin | None | 0.27M | 1x | 91.74 |
Resnet20 | TRP+Nu | Channel | 0.1M | 2.17x | 90.50 |
Resnet20 | TRP+Nu | Spatial | 0.08M | 2.84x | 90.62 |
Resnet20 | TRP+Nu | ND | 0.14M | 2.04x | 90.88 |
Resnet32 | Origin | None | 0.47M | 1x | 92.26 |
Resnet32 | TRP+Nu | Channel | 0.16M | 2.2x | 91.40 |
Resnet32 | TRP+Nu | Spatial | 0.11M | 3.4x | 91.39 |
- Results on ImageNet(without decomposing the final FC):
Network | Method | Scheme | FLOPs | Top1 | Top5 |
---|---|---|---|---|---|
Resnet50 | Origin | None | 1x | 75.90 | 92.80 |
Resnet50 | TRP+Nu | Channel | 2.23x | 72.69 | 91.41 |
Resnet50 | TRP+Nu | Channel | 1.80x | 74.06 | 92.07 |
Resnet50 | Channel Pruning(ICCV) | None | 2.00x | - | 90.91 |
Resnet50 | Filter Pruning(ICCV) | None | 1.58x | 72.04 | 90.67 |
Resnet50 | Filter Pruning(TPAMI) | None | 2.26x | 72.03 | 90.99 |
If you think this work is helpful for your own research, please consider add following bibtex config in your latex file
@article{xu2018trained,
title={Trained Rank Pruning for Efficient Deep Neural Networks},
author={Xu, Yuhui and Li, Yuxi and Zhang, Shuai and Wen, Wei and Wang, Botao and Qi, Yingyong and Chen, Yiran and Lin, Weiyao and Xiong, Hongkai},
journal={arXiv preprint arXiv:1812.02402},
year={2018}
}