MetaSeg: MetaFormer-Based Global Contexts-Aware Network for Efficient Semantic Segmentation (Accepted by WACV 2024)
* Equal contribution, †Correspondence
Sogang University
The official code is available at here.
For install and data preparation, please refer to the guidelines in MMSegmentation.
pip install timm
cd MetaSeg
python setup.py develop
Download backbone [ MSCAN-T & MSCAN-B ] pretrained weights.
Put them in a folder pretrain/
.
Example - Train MetaSeg-T
on ADE20K
:
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./tools/dist_train.sh local_configs/metaseg/tiny/metaseg.tiny.512x512.ade.160k.py <GPU_NUM>
Example - Evaluate MetaSeg-T
on ADE20K
:
# Single-gpu testing
CUDA_VISIBLE_DEVICES=0 python tools/test.py local_configs/metaseg/tiny/metaseg.tiny.512x512.ade.160k.py /path/to/checkpoint_file
# Multi-gpu testing
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./tools/dist_test.sh local_configs/metaseg/tiny/metaseg.tiny.512x512.ade.160k.py /path/to/checkpoint_file <GPU_NUM>
@inproceedings{kang2024metaseg,
title={MetaSeg: MetaFormer-based Global Contexts-aware Network for Efficient Semantic Segmentation},
author={Kang, Beoungwoo and Moon, Seunghun and Cho, Yubin and Yu, Hyunwoo and Kang, Suk-Ju},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={434--443},
year={2024}
}