This is a very quick run-through of some basic statistical concepts, adapted from Lab 4 in Harvard's CS109 course. Please feel free to try the original lab if you're feeling ambitious :-) The CS109 git repository also has the solutions if you're stuck.
Linear Regression Models Prediction using linear regression Linear regression is used to model and predict continuous outcomes with normal random errors. There are nearly an infinite number of different types of regression models and each regression model is typically defined by the distribution of the prediction errors (called "residuals") of the type of data. Logistic regression is used to model binary outcomes whereas Poisson regression is used to predict counts. In this exercise, we'll see some examples of linear regression as well as Train-test splits.
The packages we'll cover are: statsmodels, seaborn, and scikit-learn. While we don't explicitly teach statsmodels and seaborn in the Springboard workshop, those are great libraries to know.