Skip to content

yevyevyev/openai

 
 

Repository files navigation

Dart library For OpenAI APIs (GPT-3 & DALL-E..)


GitHub commit activity GitHub contributors GitHub Repo stars GitHub Workflow Status GitHub Workflow Status GitHub Pub Version Pub Likes Pub Points Pub Popularity


Help this grow and get discovered by other devs with a ⭐ star.



An open-source Client package that allows developers to easily integrate the power of OpenAI's state-of-the-art AI models into their Dart/Flutter applications.

This library provides simple and intuitive methods for making requests to OpenAI's various APIs, including the GPT-3 language model, DALL-E image generation, and more.

The package is designed to be lightweight and easy to use, so you can focus on building your application, rather than worrying about the complexities and errors caused by dealing with HTTP requests.



Unofficial
OpenAI does not have any official Dart library.

Note:

Please note that this client SDK connects directly to OpenAI APIs using HTTP requests.

✨ Key Features

  • Easy to use methods that reflect exactly the OpenAI documentation, with additional functionalities that make it better to use with Dart Programming Language.
  • Authorize just once, use it anywhere and at any time in your application.
  • Developer-friendly.
  • Stream functionality for completions API & fine-tune events API.

👑 Code Progress (100 %)

💫 Testing Progress (100 %)


📜 Full Documentation:

For the full documentation about all members this library offers, check here.


🟢 Usage

Authentication

API key

The OpenAI API uses API keys for authentication. you can get your account APU key by visiting API keys of your account.

We highly recommend loading your secret key at runtime from a .env file, you can use the envied package.

// .env
OPEN_AI_API_KEY=<REPLACE WITH YOUR API KEY>
// lib/env/env.dart
import 'package:envied/envied.dart';
part 'env.g.dart';

@Envied(path: ".env")
abstract class Env {
  @EnviedField(varName: 'OPEN_AI_API_KEY') // the .env variable.
  static const apiKey = _Env.apiKey;
}
// lib/main.dart
void main() {
 OpenAI.apiKey = Env.apiKey; // Initializes the package with that API key
 // ..
}

if no apiKey is set, and you tried to access OpenAI.instance, a MissingApiKeyException will be thrown even before making the actual request.

if the apiKey is set, but it is invalid when making requests, a RequestFailedException will be thrown in your app, check the error handling section for more info.

Setting an organization

if you belong to a specific organization, you can pass its id to OpenAI.organization like this:

 OpenAI.organization = "ORGANIZATION ID";

If you don't belong actually to any organization, you can just ignore this section, or set it to null.

Learn More From Here.


Models

List Models

Lists the currently available models, and provides basic information about each one such as the owner and availability.

 List<OpenAIModelModel> models = await OpenAI.instance.model.list();
 OpenAIModelModel firstModel = models.first;

 print(firstModel.id); // ...

Retrieve model.

Retrieves a single model by its id and gets additional pieces of information about it.

 OpenAIModelModel model = await OpenAI.instance.model.retrieve("text-davinci-003");
 print(model.id)

If the model id does not exists, a RequestFailedException will be thrown, check Error Handling section.

Learn More From Here.


Completions

Create completion

Creates a Completion based on the provided properties model, prompt & other properties.

OpenAICompletionModel completion = await OpenAI.instance.completion.create(
  model: "text-davinci-003",
  prompt: "Dart is a progr",
  maxTokens: 20,
  temperature: 0.5,
  n: 1,
  stop: ["\n"],
  echo: true,
);

if the request failed (as an example, if you did pass an invalid model id...), a RequestFailedException will be thrown, check Error Handling section.

Create Completion Stream

In addition to calling the OpenAI.instance.completion.create() which is a Future and will not return an actual value until the completion is ended, you can get a Stream of values as they are generated:

Stream<OpenAIStreamCompletionModel> completionStream = OpenAI.instance.completion.createStream(
  model: "text-davinci-003",
  prompt: "Github is ",
  maxTokens: 100,
  temperature: 0.5,
  topP: 1,
 );

completionStream.listen((event) {
 final firstCompletionChoice = event.choices.first;
 print(firstCompletionChoice.text); // ...
});

Learn More From Here.


Edits

Creates an edited version of the given prompt based on the used model.

Create edit

OpenAIEditModel edit = await OpenAI.instance.edit.create(
  model: "text-davinci-edit-001";
  instruction: "remote all '!'from input text",
  input: "Hello!!, I! need to be ! somethi!ng"
  n: 1,
  temperature: 0.8,
);

Learn More From Here.


Images

Create image

Generates a new image based on a prompt given.

 OpenAIImageModel image = await OpenAI.instance.image.create(
  prompt: 'an astronaut on the sea',
  n: 1,
  size: OpenAIImageSize.size1024,
  responseFormat: OpenAIResponseFormat.url,
);

Create image edit

Creates an edited or extended image given an original image and a prompt.

OpenAiImageEditModel imageEdit = await OpenAI.instance.image.edit(
 file: File(/* IMAGE PATH HERE */),
 mask: File(/* MASK PATH HERE */),
 prompt: "mask the image with a dinosaur",
 n: 1,
 size: OpenAIImageSize.size1024,
 responseFormat: OpenAIResponseFormat.url,
);

Create image variation

Creates a variation of a given image.

OpenAIImageVariationModel imageVariation = await OpenAI.instance.image.variation(
 image: File(/* IMAGE PATH HERE */),
 n: 1,
 size: OpenAIImageSize.size1024,
 responseFormat: OpenAIResponseFormat.url,
);

Learn More From Here.


Embeddings

Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.

Create embeddings

OpenAIEmbeddingsModel embeddings = await OpenAI.instance.embedding.create(
 model: "text-embedding-ada-002",
 input: "This is a text input just to test",
);

Learn More From Here.


Files

Files are used to upload documents that can be used with features like Fine-tuning.

List files

Get a list of all the uploaded files o-to your OpenAI account.

List<OpenAIFileModel> files = await OpenAI.instance.file.list();

print(files.first.fileName); // ...
print(files.first.id); // ...

Upload file

Upload a file that contains document(s) to be used across various endpoints/features. Currently, the size of all the files uploaded by one organization can be up to 1 GB. Please contact us if you need to increase the storage limit.

OpenAIFileModel uploadedFile = await OpenAI.instance.file.upload(
 file: File("/* FILE PATH HERE */"),
 purpose: "fine-tuning",
);

print(uploadedFile.id); // ...

Delete file

Deletes an existent file by it's id.

bool isFileDeleted = await OpenAI.instance.file.delete("/* FILE ID */");

print(isFileDeleted);

Retrieve file

Fetches for a single file by it's id and returns informations about it.

OpenAIFileModel file = await OpenAI.instance.file.retrieve("FILE ID");
print(file.id);

Retrieve file content

Fetches for a single file content by it's id.

dynamic fileContent  = await OpenAI.instance.file.retrieveContent("FILE ID");

print(fileContent);

Learn More From Here.


Fine Tunes

Create fine-tune

Creates a job that fine-tunes a specified model from a given dataset, and returns a fine-tuned object about the enqueued job.

OpenAIFineTuneModel fineTune = await OpenAI.instance.fineTune.create(
 trainingFile: "FILE ID",
);

print(fineTune.status); // ...

List fine-tunes

List your organization's fine-tuning jobs.

List<OpenAIFineTuneModel> fineTunes = await OpenAI.instance.fineTune.list();

print(fineTunes.first); // ...

Retrieve fine-tune

Retrieves a fine-tune by its id.

OpenAIFineTuneModel fineTune = await OpenAI.instance.fineTune.retrieve("FINE TUNE ID");

print(fineTune.id); // ...

Cancel fine-tune

Cancels a fine-tune job by its id, and returns it.

OpenAIFineTuneModel cancelledFineTune = await OpenAI.instance.fineTune.cancel("FINE TUNE ID");

print(cancelledFineTune.status); // ...

List fine-tune events

Lists a single fine-tune progress events by it's id.

 List<OpenAIFineTuneEventModel> events = await OpenAI.instance.fineTune.listEvents("FINE TUNE ID");

 print(events.first.message); // ...

Listen to fine-tune events Stream

Streams all events of a fine-tune job by its id, as they happen.

This is a long-running operation that will not return until the fine-tune job is terminated.

The stream will emit an event every time a new event is available.

Stream<OpenAIFineTuneEventStreamModel> eventsStream = OpenAI.instance.fineTune.listEventsStream("FINE TUNE ID");

eventsStream.listen((event) {
 print(event.message);
});

Delete fine-tune

Deletes a fine-tune job by its id.

 bool deleted = await OpenAI.instance.fineTune.delete("FINE TUNE ID");

print(deleted); // ...

Learn More From Here.


Moderations

Create moderation

Classifies if text violates OpenAI's Content Policy

OpenAIModerationModel moderation = await OpenAI.instance.moderation.create(
  input: "I want to kill him",
);

print(moderation.results); // ...
print(moderation.results.first.categories.hate); // ...

Learn More From Here.


Error Handling

Any time an error happens from the OpenAI API ends (As Example: when you try to create an image variation from a non-image file.. , a RequestFailedException will be thrown automatically inside your Flutter / Dart app, you can use a try-catch to catch that error, and make an action based on it:

try {

// This will throw an error.
 final errorVariation = await OpenAI.instance.image.variation(
  image: File(/*PATH OF NON-IMAGE FILE*/),
 );
} on RequestFailedException catch(e) {
 print(e.message);
 print(e.statusCode)
}
Articles:

About

Dart SDK for openAI Apis (GPT-3 & DALL-E)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Dart 100.0%