An implementation of point painting for real-time point cloud semantic segmentation painting (labeling each liDAR point with a class) based on semantic segmentation maps using DeepLabV3+.
Download the rectified stereo camera images and Velodyne sensor data from the KITTI-360 dataset. Save data in 2 folders respectively. To download them, you can use the the following shell script.
- Recticied RGB camera images:
bash download_2d_perspective.sh
. - Velodyne point cloud
bash download_3d_velodyne.sh
. - camera intrinsics and extrinsics from here.
For the semantic segmentation of RBG images, please download the pre-trained DeepLabV3+ checkpoint from here which is trained on Cityscapes dataset.
python3 /Code/Wrapper.py --DataPath {dir/to/kitti/dataset} --SavePath {dir/to/your/saving/pcd/folder} --CkptPath {dir/to/DeepLabV3+/checkpoint} --ParseData {Parse the raw point cloud data, Default:0}