-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathukf.py
339 lines (266 loc) · 9.04 KB
/
ukf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from scipy import io
import numpy as np
import os
from quat_helper import *
import matplotlib.pyplot as plt
import cv2
from math import pi
#from skvideo.io import FFmpegWriter
import cPickle as pickle
#######################################################################
#######################################################################
Dataset = 8
est = True #Set False for stitching with vicon data
stitch = True #Set False for skipping panorama
#######################################################################
#######################################################################
def cylindrical_projection(src, rot, dst=None):
nRows, nCols , c = src.shape
y = np.linspace(0, nCols - 1, nCols)
z = np.linspace(0, nRows - 1, nRows)
yy, zz = np.meshgrid(y, z)
yy = yy.reshape((1, nCols*nRows))
zz = zz.reshape((1, nCols*nRows))
rgb = np.transpose(src, (2, 0, 1)).reshape((3, nCols*nRows)).T
yy = (nCols / 2) - yy
zz = (nRows / 2) - zz
hFOV = 60 * (pi/180)
yFactor = hFOV / nCols
vFOV = 45 * (pi/180)
zFactor = vFOV / nRows
longitude = yy * yFactor
latitude = zz * zFactor
rho = 1
X = rho * np.cos(latitude) * np.cos(longitude)
Y = rho * np.cos(latitude) * np.sin(longitude)
Z = rho * np.sin(latitude)
XYZ = np.vstack((X, Y, Z))
wXYZ = rot.dot(XYZ)
wX = wXYZ[0, :]
wY = wXYZ[1, :]
wZ = wXYZ[2, :]
longitude = np.arctan2(wY, wX)
latitude = np.arctan2(wZ, np.sqrt(wX**2 + wY**2))
cylHeight = ((1 / zFactor) * (-np.tan(latitude) + pi/2)).astype(np.uint32)
cylAngle = ((1 / yFactor) * (-longitude + pi)).astype(np.uint32)
if dst is None:
dst = np.zeros((int(pi / zFactor), int(2 * pi / yFactor), 3)).astype(np.uint8)
try:
dst[cylHeight, cylAngle, :] = rgb
except IndexError:
cylHeight[cylHeight > dst.shape[0] - 1] = dst.shape[0] - 1
dst[cylHeight, cylAngle, :] = rgb
return dst
def gaussian_update(qt, ut, P, Q):
qu = vec2quat(ut)
tmp=np.matrix(np.zeros([4,6]))
L = np.linalg.cholesky(P+Q)
n,m = np.shape(P)
left_vec = L*np.sqrt(2*n)
right_vec = -L*np.sqrt(2*n)
new_vec = np.hstack((left_vec, right_vec))
nr,nc = np.shape(new_vec)
v = np.matrix(np.zeros([3,6]))
for i in range(0,nc):
temp = vec2quat(new_vec[:,i])
tmp[:,i] = np.transpose(multiply_quaternions(temp,qt))
sigma_points = np.transpose(tmp)
motion_sig = np.zeros(np.shape(sigma_points))
for i in range(0,6):
motion_sig[i] = multiply_quaternions(sigma_points[i], qu)
next_qt, error = quat_average(motion_sig, qt)
nr,nc = np.shape(error)
next_cov = np.zeros([nc,nc])
for i in range(0,nr):
temp_cov = np.transpose(error[i])*error[i]
next_cov += temp_cov
next_cov=next_cov/12
return next_qt, next_cov, sigma_points, error
def sigma_update(sigma_points, g, R):
new_sigma = np.zeros(np.shape(sigma_points))
z = np.zeros([np.shape(sigma_points)[0]-1,np.shape(sigma_points)[1]])
for i in range(0,np.shape(sigma_points)[0]):
new_sigma[i] = multiply_quaternions(multiply_quaternions(inverse_quaternion(sigma_points[i]),g),sigma_points[i])
z = new_sigma[:,1:]
z_mean = np.mean(z,0)
return z, z_mean
def calcpzz(z, z_mean):
temp = np.matrix(z - z_mean)
pzz = np.zeros([np.shape(z)[1], np.shape(z)[1]])
for i in range(0,np.shape(temp)[0]):
pzz_temp = np.transpose(temp[i])*temp[i]
pzz += pzz_temp
return pzz/12.0
def calcpxz(error, z, z_mean):
temp = np.matrix(z - z_mean)
pxz = np.zeros([np.shape(z)[1], np.shape(z)[1]])
for i in range(0,np.shape(error)[0]):
pxz_temp = np.transpose(error[i])*temp[i]
pxz += pxz_temp
return pxz/12.0
########################################################################
########################################################################
#Data Load and timestamp match
imu = io.loadmat("imu/imuRaw"+str(Dataset)+".mat")
imu_vals = imu['vals']
imu_vals = np.transpose(imu_vals)
imu_ts = imu['ts']
yts = imu_ts
imu_ts = np.transpose(imu_ts)
Vref = 3300
acc_x = -np.array(imu_vals[:,0])
acc_y = -np.array(imu_vals[:,1])
acc_z = np.array(imu_vals[:,2])
acc = [acc_x, acc_y, acc_z]
acc = np.array(acc)
acc = np.transpose(acc)
acc_sensitivity = 330.0
acc_scale_factor = Vref/1023.0/acc_sensitivity
acc_bias = acc[0] - (np.array([0, 0, 1])/acc_scale_factor)
acc_val = acc*acc_scale_factor
acc_val = acc_val - (acc_bias)*acc_scale_factor
gyro_x = np.array(imu_vals[:,4])
gyro_y = np.array(imu_vals[:,5])
gyro_z = np.array(imu_vals[:,3])
gyro = [gyro_x, gyro_y, gyro_z]
gyro = np.array(gyro)
gyro = np.transpose(gyro)
gyro_bias = gyro[0]
gyro_sensitivity = 3.33
gyro_scale_factor = Vref/1023/gyro_sensitivity
gyro_val = gyro*gyro_scale_factor
gyro_val = (np.array(gyro_val) - (gyro_bias*gyro_scale_factor))*(np.pi/180)
if os.path.exists("vicon/viconRot"+str(Dataset)+".mat"):
vicon = io.loadmat("vicon/viconRot"+str(Dataset)+".mat")
vicon_vals = vicon['rots']
vicon_ts = vicon['ts']
vicon_phi = np.zeros([np.shape(vicon_vals)[2], 1])
vicon_theta = np.zeros([np.shape(vicon_vals)[2], 1])
vicon_psi = np.zeros([np.shape(vicon_vals)[2], 1])
for i in range(np.shape(vicon_vals)[2]):
R = vicon_vals[:,:,i]
vicon_phi[i], vicon_theta[i], vicon_psi[i] = rot2euler(R)
else:
est = True
########################################################################
########################################################################
P = 0.00001*np.identity(3)
Q = 0.00001*np.identity(3)
R = 0.0001*np.identity(3)
q0 = np.matrix([1, 0, 0, 0])
qt = np.matrix([1, 0, 0, 0])
ut = gyro_val[0]
g = np.matrix([0, 0, 0, 1])
t = imu_ts.shape[0]
R_calc = np.zeros((3, 3, np.shape(gyro_val)[0]))
#UKF
if not os.path.exists('Parameters/param'+str(Dataset)+'.pickle'):
for i in range(0,np.shape(gyro_val)[0]):
if i==0:
ut = gyro_val[i]*imu_ts[0]
predicted_q = q0
else:
ut = gyro_val[i]*(imu_ts[i] - imu_ts[i-1])
next_q, next_cov, sigma_points, error = gaussian_update(qt, ut, P, Q)
z, z_mean = sigma_update(sigma_points, g, R)
z = np.matrix(z)
z_mean = np.matrix(z_mean)
pzz = calcpzz(z, z_mean)
pvv = pzz + R
pxz = calcpxz(error, z, z_mean)
K = np.dot(pxz,np.linalg.inv(pvv))
I = np.transpose(acc_val[i] - z_mean)
KI = vec2quat(np.transpose(K*I))
qt = np.matrix(np.empty([1,4]))
qt = multiply_quaternions(KI,next_q)
P = next_cov - np.dot(np.dot(K,pvv),np.transpose(K))
predicted_q = np.vstack((predicted_q, qt))
R_calc[:, :, i] = quat2rot(qt)
with open('Parameters/param'+str(Dataset)+'.pickle', "wb") as f:
pickle.dump((predicted_q, R_calc), f)
else:
with open('Parameters/param'+str(Dataset)+'.pickle', "rb") as f:
predicted_q, R_calc = pickle.load(f)
phi = np.zeros([np.shape(predicted_q)[0], 1])
theta = np.zeros([np.shape(predicted_q)[0], 1])
psi = np.zeros([np.shape(predicted_q)[0], 1])
for i in range(np.shape(predicted_q)[0]):
R = quat2rot(predicted_q[i])
phi[i], theta[i], psi[i] = rot2euler(R)
if os.path.exists("vicon/viconRot"+str(Dataset)+".mat"):
plt.figure(1)
plt.subplot(311)
plt.plot(vicon_phi, 'b', phi, 'r')
plt.ylabel('Roll')
plt.subplot(312)
plt.plot(vicon_theta, 'b', theta, 'r')
plt.ylabel('Pitch')
plt.subplot(313)
plt.plot(vicon_psi, 'b', psi, 'r')
plt.ylabel('Yaw')
plt.savefig('Results/RPY'+str(Dataset)+'.png')
plt.show()
else:
plt.figure(1)
plt.subplot(311)
plt.plot(phi, 'r')
plt.ylabel('Roll')
plt.subplot(312)
plt.plot(theta, 'r')
plt.ylabel('Pitch')
plt.subplot(313)
plt.plot(psi, 'r')
plt.ylabel('Yaw')
plt.savefig('Results/RPYwoVicon'+str(Dataset)+'.png')
plt.show()
if stitch:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
if est:
out = cv2.VideoWriter('Results/dataset_' + str(Dataset) + 'IMU.avi', fourcc, fps=24.0, frameSize=(1920, 960), isColor=True)
#writer = FFmpegWriter('Results/dataset_' + str(Dataset) + 'IMU.avi')
else:
out = cv2.VideoWriter('Results/dataset_' + str(Dataset) + 'Vicon.avi', fourcc, fps=24.0, frameSize=(1920, 960), isColor=True)
#writer = FFmpegWriter('Results/dataset_' + str(Dataset) + 'Vicon.avi')
cam_Packet = io.loadmat("cam/cam"+str(Dataset)+".mat")
cam_ImArrays = cam_Packet['cam']
cam_ts = cam_Packet['ts']
for im in range(cam_ImArrays.shape[3]):
image = cam_ImArrays[:, :, :, im]
if est:
idx = np.where(np.isclose(yts[0], cam_ts[0, im], rtol=0, atol=1E-2))[0]
if idx.size > 1:
idx = idx[0]
try:
R = R_calc[:, :, idx].reshape((3, 3))
except ValueError:
break
else:
idx = np.where(np.isclose(vicon_ts[0], cam_ts[0, im], rtol=0, atol=1E-2))[0]
if idx.size > 1:
idx = idx[0]
try:
R = vicon_vals[:, :, idx].reshape((3, 3))
except ValueError:
break
if im == 0:
pano = cylindrical_projection(src=image, rot=R)
else:
pano = cylindrical_projection(src=image, rot=R, dst=pano)
cv2.namedWindow('Stitching', cv2.WINDOW_NORMAL)
cv2.resizeWindow('Stiching', pano.shape[0], pano.shape[1])
cv2.imshow('Stitching', pano)
out.write(pano)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#writer.writeFrame(pano)
#writer.close()
out.release()
cv2.destroyAllWindows()
cv2.namedWindow('Panorama', cv2.WINDOW_NORMAL)
cv2.resizeWindow('Panorama', pano.shape[0], pano.shape[1])
cv2.imshow('Panorama', pano)
if est:
cv2.imwrite('Results/Pano'+str(Dataset)+'IMU.jpg',pano)
else:
cv2.imwrite('Results/Pano'+str(Dataset)+'Vicon.jpg',pano)
cv2.waitKey(0)