Skip to content

Commit

Permalink
feat: unified mixed-encoding mcap table reader
Browse files Browse the repository at this point in the history
  • Loading branch information
egorchakov committed Sep 26, 2024
1 parent 70fe398 commit ce04e82
Show file tree
Hide file tree
Showing 19 changed files with 374 additions and 547 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -17,3 +17,5 @@ examples/config

# lockfiles
uv.lock

.basedpyright
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ fail_fast: true

repos:
- repo: https://github.com/abravalheri/validate-pyproject
rev: v0.19
rev: v0.20.2
hooks:
- id: validate-pyproject

Expand All @@ -24,14 +24,14 @@ repos:
exclude: examples/config

- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.6.7
rev: v0.6.8
hooks:
- id: ruff
args: [--fix]
- id: ruff-format

- repo: https://github.com/DetachHead/basedpyright-pre-commit-mirror
rev: 1.17.5
rev: 1.18.0
hooks:
- id: basedpyright

Expand Down
155 changes: 84 additions & 71 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,18 @@ See [examples/config_templates](examples/config_templates) ([`ytt`](https://carv
<details>
<summary><a href=https://nuscenes.org> nuScenes </a> x <a href=https://mcap.dev> mcap </a></summary>

1. Setup a new project with [`uv`](https://docs.astral.sh/uv/)
Setup a new project with [`uv`](https://docs.astral.sh/uv/):
```shell
uv init nuscenes_mcap
cd nuscenes_mcap

uv add hydra-core omegaconf
uv add https://github.com/yaak-ai/rbyte/releases/latest/download/rbyte-0.2.0-py3-none-any.whl --extra mcap --extra jpeg --extra visualize
uv add https://github.com/yaak-ai/rbyte/releases/latest/download/rbyte-0.3.0-py3-none-any.whl --extra mcap --extra jpeg --extra visualize

mkdir data
```

2. Follow the guide at [foxglove/nuscenes2mcap](https://github.com/foxglove/nuscenes2mcap) and move the resulting `.mcap` files under `data/`. In this example we're using a subset of topics from `NuScenes-v1.0-mini-scene-0103.mcap`:
Follow the guide at [foxglove/nuscenes2mcap](https://github.com/foxglove/nuscenes2mcap) and move the resulting `.mcap` files under `data/`. In this example we're using a subset of topics from `NuScenes-v1.0-mini-scene-0103.mcap`:
```shell
mcap info data/NuScenes-v1.0-mini-scene-0103.mcap
library: nuscenes2mcap
Expand Down Expand Up @@ -93,13 +93,13 @@ attachments: 0
metadata: 1
```

3. Create a `config.yaml` with the following:
Create a `config.yaml` to extract frames from three cameras + velocity, aligning everything to the first camera's timestamp:
```yaml
---
dataloader:
_target_: torch.utils.data.DataLoader
dataset: ${dataset}
batch_size: 32
batch_size: 1
collate_fn:
_target_: rbyte.utils.dataloader.collate_identity
_partial_: true
Expand All @@ -111,50 +111,68 @@ dataset:
inputs:
NuScenes-v1.0-mini-scene-0103:
frame:
CAM_FRONT:
index_column: /CAM_FRONT/image_rect_compressed/frame_idx
CAM_FRONT/image_rect_compressed:
index_column: /CAM_FRONT/image_rect_compressed/idx
reader:
_target_: rbyte.io.frame.mcap.McapFrameReader
path: data/NuScenes-v1.0-mini-scene-0103.mcap
topic: /CAM_FRONT/image_rect_compressed
message_decoder_factory: ${message_decoder_factory}
frame_decoder: ${jpeg_decoder}
decoder_factory: mcap_protobuf.decoder.DecoderFactory
frame_decoder: ${frame_decoder}

CAM_FRONT_LEFT:
index_column: /CAM_FRONT_LEFT/image_rect_compressed/frame_idx
CAM_FRONT_LEFT/image_rect_compressed:
index_column: /CAM_FRONT_LEFT/image_rect_compressed/idx
reader:
_target_: rbyte.io.frame.mcap.McapFrameReader
path: data/NuScenes-v1.0-mini-scene-0103.mcap
topic: /CAM_FRONT_LEFT/image_rect_compressed
message_decoder_factory: ${message_decoder_factory}
frame_decoder: ${jpeg_decoder}
decoder_factory: mcap_protobuf.decoder.DecoderFactory
frame_decoder: ${frame_decoder}

CAM_FRONT_RIGHT/image_rect_compressed:
index_column: /CAM_FRONT_RIGHT/image_rect_compressed/idx
reader:
_target_: rbyte.io.frame.mcap.McapFrameReader
path: data/NuScenes-v1.0-mini-scene-0103.mcap
topic: /CAM_FRONT_RIGHT/image_rect_compressed
decoder_factory: mcap_protobuf.decoder.DecoderFactory
frame_decoder: ${frame_decoder}

table:
path: data/NuScenes-v1.0-mini-scene-0103.mcap
builder:
_target_: rbyte.io.table.TableBuilder
_convert_: all
reader:
_target_: rbyte.io.table.mcap.McapProtobufTableReader
_target_: rbyte.io.table.mcap.McapTableReader
_recursive_: false
_convert_: all
decoder_factories:
- mcap_protobuf.decoder.DecoderFactory
- rbyte.utils.mcap.McapJsonDecoderFactory
fields:
/CAM_FRONT/image_rect_compressed:
log_time:
_target_: polars.Datetime
time_unit: ns
idx: null

/CAM_FRONT_LEFT/image_rect_compressed:
log_time:
_target_: polars.Datetime
time_unit: ns
idx: null

/gps:
/CAM_FRONT_RIGHT/image_rect_compressed:
log_time:
_target_: polars.Datetime
time_unit: ns
idx: null

latitude: polars.Float64
longitude: polars.Float64
/odom:
log_time:
_target_: polars.Datetime
time_unit: ns
vel.x: null

merger:
_target_: rbyte.io.table.TableMerger
Expand All @@ -167,40 +185,43 @@ dataset:
/CAM_FRONT_LEFT/image_rect_compressed:
log_time:
method: ref
frame_idx:
idx:
method: asof
tolerance: 100ms
tolerance: 10ms
strategy: nearest

/gps:
/CAM_FRONT_RIGHT/image_rect_compressed:
log_time:
method: ref
latitude:
method: asof
tolerance: 1000ms
strategy: nearest
longitude:
idx:
method: asof
tolerance: 1000ms
tolerance: 10ms
strategy: nearest

/odom:
log_time:
method: ref
vel.x:
method: interp

filter: |
`/odom/vel.x` >= 8.6
cache: !!null

sample_builder:
_target_: rbyte.sample.builder.GreedySampleTableBuilder
index_column: /CAM_FRONT/image_rect_compressed/frame_idx
length: 1
stride: 1
min_step: 1
index_column: /CAM_FRONT/image_rect_compressed/idx

jpeg_decoder:
frame_decoder:
_target_: simplejpeg.decode_jpeg
_partial_: true
colorspace: rgb

message_decoder_factory:
_target_: mcap_protobuf.decoder.DecoderFactory
fastdct: true
fastupsample: true
```
3. Build a dataloader and inspect a batch:
Build a dataloader and print a batch:
```python
from omegaconf import OmegaConf
from hydra.utils import instantiate
Expand All @@ -212,62 +233,58 @@ batch = next(iter(dataloader))
print(batch)
```

Inspect the batch:
```python
Batch(
frame=TensorDict(
fields={
CAM_BACK: Tensor(shape=torch.Size([32, 1, 900, 1600, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
CAM_FRONT: Tensor(shape=torch.Size([32, 1, 900, 1600, 3]), device=cpu, dtype=torch.uint8, is_shared=False)},
batch_size=torch.Size([32]),
CAM_FRONT/image_rect_compressed: Tensor(shape=torch.Size([1, 1, 900, 1600, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
CAM_FRONT_LEFT/image_rect_compressed: Tensor(shape=torch.Size([1, 1, 900, 1600, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
CAM_FRONT_RIGHT/image_rect_compressed: Tensor(shape=torch.Size([1, 1, 900, 1600, 3]), device=cpu, dtype=torch.uint8, is_shared=False)},
batch_size=torch.Size([1]),
device=None,
is_shared=False),
meta=BatchMeta(
input_id=NonTensorData(data=['NuScenes-v1.0-mini ... .0-mini-scene-0103'], batch_size=torch.Size([32]), device=None),
sample_idx=Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.int64, is_shared=False),
batch_size=torch.Size([32]),
input_id=NonTensorData(data=['NuScenes-v1.0-mini-scene-0103'], batch_size=torch.Size([1]), device=None),
sample_idx=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, is_shared=False),
batch_size=torch.Size([1]),
device=None,
is_shared=False),
table=TensorDict(
fields={
/CAM_BACK/image_rect_compressed/frame_idx: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_BACK/image_rect_compressed/log_time: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_FRONT/image_rect_compressed/frame_idx: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_FRONT/image_rect_compressed/log_time: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/gps/latitude: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float64, is_shared=False),
/gps/log_time: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/gps/longitude: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float64, is_shared=False)},
batch_size=torch.Size([32]),
/CAM_FRONT/image_rect_compressed/idx: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_FRONT/image_rect_compressed/log_time: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_FRONT_LEFT/image_rect_compressed/idx: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_FRONT_LEFT/image_rect_compressed/log_time: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_FRONT_RIGHT/image_rect_compressed/idx: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/CAM_FRONT_RIGHT/image_rect_compressed/log_time: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.int64, is_shared=False),
/odom/vel.x: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.float64, is_shared=False)},
batch_size=torch.Size([1]),
device=None,
is_shared=False),
batch_size=torch.Size([32]),
batch_size=torch.Size([1]),
device=None,
is_shared=False)

```

<details>
<summary>(optional) <a href=https://rerun.io.> rerun </a> visualization </a></summary>

4. Add a `logger` to `config.yaml`:
Append a `logger` to `config.yaml`:
```yaml
# ...

logger:
_target_: rbyte.viz.loggers.RerunLogger
schema:
frame:
CAM_FRONT: rerun.components.ImageBufferBatch
CAM_FRONT_LEFT: rerun.components.ImageBufferBatch

CAM_FRONT/image_rect_compressed: rerun.components.ImageBufferBatch
CAM_FRONT_LEFT/image_rect_compressed: rerun.components.ImageBufferBatch
CAM_FRONT_RIGHT/image_rect_compressed: rerun.components.ImageBufferBatch
table:
/CAM_FRONT/image_rect_compressed/log_time: rerun.TimeNanosColumn
/CAM_FRONT_LEFT/image_rect_compressed/frame_idx: rerun.TimeSequenceColumn
/gps/log_time: rerun.TimeNanosColumn
/gps/latitude: rerun.components.ScalarBatch
/gps/longitude: rerun.components.ScalarBatch
/CAM_FRONT/image_rect_compressed/idx: rerun.TimeSequenceColumn
/CAM_FRONT_LEFT/image_rect_compressed/idx: rerun.TimeSequenceColumn
/CAM_FRONT_RIGHT/image_rect_compressed/idx: rerun.TimeSequenceColumn
/odom/vel.x: rerun.components.ScalarBatch
```
5. Visualize the dataset:
Visualize the dataset:
```python
from omegaconf import OmegaConf
from hydra.utils import instantiate
Expand All @@ -280,14 +297,10 @@ logger = instantiate(config.logger)
for batch_idx, batch in enumerate(dataloader):
logger.log(batch_idx, batch)
```
<img width="1510" alt="image" src="https://github.com/user-attachments/assets/f00d6b66-9e8b-4dce-9f1e-6af281141f84">
<img alt="rerun" src="https://github.com/user-attachments/assets/c29965a7-787a-46fa-a5a0-a51f0133e5ba">
</details>
</details>
## Development
1. Install required tools:
Expand Down
Loading

0 comments on commit ce04e82

Please sign in to comment.