-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' into add-help-function
- Loading branch information
Showing
2 changed files
with
378 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,378 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "0dcf0b88-e2ba-48c2-8a57-ddc7a7dc520a", | ||
"metadata": {}, | ||
"source": [ | ||
"# Process Overview\n", | ||
"\n", | ||
"Start with a Keras model, which is then converted into a tflite model. The tflite model is then run through the xformer compiler to make an xmos optimised tflite file.\n", | ||
"\n", | ||
"We can use the relavent interpreters for each model to verify that given the same input, they both produce the same output. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "87c94f93-a1aa-4ac7-8b69-a4bccd22cae6", | ||
"metadata": {}, | ||
"source": [ | ||
"<img src=\"./conversion_process.jpg\" alt=\"Diagram of conversion Process\" style=\"width: 500px; height: auto; margin: 1rem auto 2rem;\" />" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"id": "8729a280-96ca-49aa-941e-ed0bf785c086", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Requirement already satisfied: xmos_ai_tools in /usr/local/anaconda3/lib/python3.8/site-packages (0.1.4)\n", | ||
"Requirement already satisfied: numpy<2.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from xmos_ai_tools) (1.20.1)\n", | ||
"Requirement already satisfied: tensorflow in /usr/local/anaconda3/lib/python3.8/site-packages (2.8.0)\n", | ||
"Requirement already satisfied: libclang>=9.0.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (13.0.0)\n", | ||
"Requirement already satisfied: numpy>=1.20 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.20.1)\n", | ||
"Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (3.7.4.3)\n", | ||
"Requirement already satisfied: tensorboard<2.9,>=2.8 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (2.8.0)\n", | ||
"Requirement already satisfied: keras<2.9,>=2.8.0rc0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (2.8.0)\n", | ||
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (3.3.0)\n", | ||
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.1.0)\n", | ||
"Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (0.2.0)\n", | ||
"Requirement already satisfied: six>=1.12.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.15.0)\n", | ||
"Requirement already satisfied: gast>=0.2.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (0.5.3)\n", | ||
"Requirement already satisfied: wrapt>=1.11.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.12.1)\n", | ||
"Requirement already satisfied: h5py>=2.9.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (2.10.0)\n", | ||
"Requirement already satisfied: protobuf>=3.9.2 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (3.19.4)\n", | ||
"Requirement already satisfied: astunparse>=1.6.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.6.3)\n", | ||
"Requirement already satisfied: tf-estimator-nightly==2.8.0.dev2021122109 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (2.8.0.dev2021122109)\n", | ||
"Requirement already satisfied: flatbuffers>=1.12 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (2.0)\n", | ||
"Requirement already satisfied: keras-preprocessing>=1.1.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.1.2)\n", | ||
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.44.0)\n", | ||
"Requirement already satisfied: setuptools in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (52.0.0.post20210125)\n", | ||
"Requirement already satisfied: absl-py>=0.4.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (1.0.0)\n", | ||
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorflow) (0.24.0)\n", | ||
"Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from astunparse>=1.6.0->tensorflow) (0.36.2)\n", | ||
"Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.4.6)\n", | ||
"Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.6.1)\n", | ||
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (2.25.1)\n", | ||
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (3.3.6)\n", | ||
"Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.8.1)\n", | ||
"Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (2.6.0)\n", | ||
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/anaconda3/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.0.1)\n", | ||
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.2.8)\n", | ||
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (5.0.0)\n", | ||
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/anaconda3/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.8)\n", | ||
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (1.3.1)\n", | ||
"Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/anaconda3/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow) (4.11.2)\n", | ||
"Requirement already satisfied: zipp>=0.5 in /usr/local/anaconda3/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow) (3.4.1)\n", | ||
"Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/anaconda3/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.4.8)\n", | ||
"Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/anaconda3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (4.0.0)\n", | ||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/anaconda3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2020.12.5)\n", | ||
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/anaconda3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2.10)\n", | ||
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/anaconda3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (1.26.4)\n", | ||
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/anaconda3/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (3.2.0)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"! pip install xmos_ai_tools\n", | ||
"! pip install tensorflow" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"id": "12967287", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import tensorflow as tf\n", | ||
"import numpy as np\n", | ||
"from xmos_ai_tools import xformer, xcore_tflm_host_interpreter" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b592ad9d-79e0-4304-a005-57eb03bf26ef", | ||
"metadata": {}, | ||
"source": [ | ||
"# Make a Model to convert\n", | ||
"Use Keras to make a model of arbiraty size and shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"id": "39cfdc25", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pool_size = (2, 2)\n", | ||
"input_shape = (3, 3, 4)\n", | ||
"model = tf.keras.Sequential([\n", | ||
" tf.keras.layers.AveragePooling2D(pool_size=pool_size, input_shape=input_shape)\n", | ||
"])\n", | ||
"model.compile()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "50d58472-a59c-45c5-b47c-fc8d571b7677", | ||
"metadata": {}, | ||
"source": [ | ||
"## Convert keras model into a tflite model\n", | ||
"The xcore converter cannot optimise a keras model directly to run on xcore devices, so it must first be converted into a tflite file(a flatbuffer)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"id": "aafe3198", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"converter = tf.lite.TFLiteConverter.from_keras_model(model)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "fa2f5c47", | ||
"metadata": {}, | ||
"source": [ | ||
"### Representitive Dataset\n", | ||
"\n", | ||
"Tensorflow can optimise the converted model to int8 if you pass it a representative dataset. This dataset can be a small subset (around ~100-500 samples) of the training or validation data\n", | ||
"\n", | ||
"The below function randomly gemerates this, but see [the tensorflow ducumentation](https://www.tensorflow.org/lite/performance/post_training_quantization) to see how to do this in practice." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"id": "fa57eb0a", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# As an example use a random dataset\n", | ||
"def representative_dataset():\n", | ||
" batch_size = 8\n", | ||
" for _ in range(100):\n", | ||
" data = np.random.uniform(-0.1, 0.001, (batch_size, *input_shape))\n", | ||
" yield [data.astype(np.float32)]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "52dca7ac-8a6a-4d9c-b4d3-42d0b3fbb622", | ||
"metadata": {}, | ||
"source": [ | ||
"* **tf.lite.Optimize.DEFAULT:** Default optimization strategy that quantizes model weights. Enhanced optimizations are gained by providing a representative dataset that quantizes biases and activations as well. Converter will do its best to reduce size and latency, while minimizing the loss in accuracy.\n", | ||
"\n", | ||
"* **target_spec.supported_ops:** Import TFLITE ops. [Tensorflow docs](https://www.tensorflow.org/lite/guide/ops_select)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"id": "7b093742", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"INFO:tensorflow:Assets written to: /var/folders/fg/_pf9q2tj3cl9yfjb392zl7rm0000gn/T/tmpd8ewikm8/assets\n" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"INFO:tensorflow:Assets written to: /var/folders/fg/_pf9q2tj3cl9yfjb392zl7rm0000gn/T/tmpd8ewikm8/assets\n", | ||
"/usr/local/anaconda3/lib/python3.8/site-packages/tensorflow/lite/python/convert.py:746: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway.\n", | ||
" warnings.warn(\"Statistics for quantized inputs were expected, but not \"\n", | ||
"WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Set up the converter to convert our float model into int8 quantised model\n", | ||
"#explain https://www.tensorflow.org/lite/performance/post_training_quantization\n", | ||
"converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", | ||
"converter.representative_dataset = representative_dataset\n", | ||
"converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]\n", | ||
"converter.inference_input_type = tf.int8 \n", | ||
"converter.inference_output_type = tf.int8\n", | ||
"\n", | ||
"tflite_model = converter.convert()\n", | ||
"\n", | ||
"# Save the model.\n", | ||
"tflite_model_path = 'avgpooling2d.tflite'\n", | ||
"with open(tflite_model_path, 'wb') as f:\n", | ||
" f.write(tflite_model)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "379a4e6b-7a17-49c8-b289-0714b315f0bc", | ||
"metadata": {}, | ||
"source": [ | ||
"# Optimise model for XCore\n", | ||
"Use `xcore_conv.convert(input_path, output_path)` to make an xcore optimised version of the model." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"id": "a26aa710", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0" | ||
] | ||
}, | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"xcore_optimised_path = 'xcore_model.tflite'\n", | ||
"xformer.convert(tflite_model_path, xcore_optimised_path, None)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "73ee3d58-55da-4c5b-9ec5-46c82321b0a8", | ||
"metadata": {}, | ||
"source": [ | ||
"# Check it worked\n", | ||
"To check if it worked, we can use the interpreters to run the models and make sure that they produce the same output.\n", | ||
"\n", | ||
"For normal tensorflow tflite models, use `tensorflow.lite.Interpreter`. For XCore optimised models, the `XCOREInterpreter` must be used." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"id": "5ada7955", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tf_interpreter = tf.lite.Interpreter(model_path=tflite_model_path)\n", | ||
"tf_interpreter.allocate_tensors()\n", | ||
"\n", | ||
"tf_input_details = tf_interpreter.get_input_details()\n", | ||
"tf_output_details = tf_interpreter.get_output_details()\n", | ||
"\n", | ||
"tf_input_shape = tf_input_details[0]['shape']\n", | ||
"# Fill with 126 so that xcore can be given same input\n", | ||
"tf_input_data = np.array(np.random.randint(126, 127, tf_input_shape), dtype=np.int8)\n", | ||
"\n", | ||
"tf_interpreter.set_tensor(tf_input_details[0]['index'], tf_input_data)\n", | ||
"\n", | ||
"tf_interpreter.invoke()\n", | ||
"tf_output_data = tf_interpreter.get_tensor(tf_output_details[0]['index'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"id": "62d94234", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"ename": "TypeError", | ||
"evalue": "'module' object is not callable", | ||
"output_type": "error", | ||
"traceback": [ | ||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | ||
"\u001b[0;32m<ipython-input-18-f7df31658327>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mxcore_interpreter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mxcore_tflm_host_interpreter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxcore_optimised_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mxcore_interpreter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mallocate_tensors\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mxcore_input_details\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mxcore_interpreter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_input_details\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mxcore_output_details\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mxcore_interpreter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_output_details\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||
"\u001b[0;31mTypeError\u001b[0m: 'module' object is not callable" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"xcore_interpreter = xcore_tflm_host_interpreter(model_path=xcore_optimised_path)\n", | ||
"xcore_interpreter.allocate_tensors()\n", | ||
"\n", | ||
"xcore_input_details = xcore_interpreter.get_input_details()\n", | ||
"xcore_output_details = xcore_interpreter.get_output_details()\n", | ||
"\n", | ||
"xcore_input_shape = xcore_input_details[0]['shape']\n", | ||
"# Fill with 126 so that xcore converter has the same inputs\n", | ||
"xcore_input_data = np.array(np.random.randint(126, 127, xcore_input_shape), dtype=np.int8)\n", | ||
"\n", | ||
"xcore_interpreter.set_tensor(xcore_input_details[0]['index'], xcore_input_data)\n", | ||
"\n", | ||
"xcore_interpreter.invoke()\n", | ||
"xcore_output_data = xcore_interpreter.get_tensor(xcore_output_details[0]['index'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3f8e306c-f6f1-42d3-b1b3-384142733fbe", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(\"Both models' output the same result?\")\n", | ||
"print(\"yes\" if np.array_equal(xcore_output_data[0], tf_output_data[0]) else \"no\")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5ee7356b-80a7-40fe-a0a7-376444114c13", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "cbb4f40b-0f94-45e7-b398-dda5d002294c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6ca3b7e5-703a-4818-98f1-f349057d0a26", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"interpreter": { | ||
"hash": "0436a0dea52299ed28644175e220c962eae431d92561f4f402c0c00186dcb06f" | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |