Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add logistic regression <-> Variational Inference #156

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ authors = ["xKDR Forum, Sourish Das"]
version = "0.1.1"

[deps]
AdvancedVI = "b5ca4192-6429-45e5-a2d9-87aec30a685c"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
Expand All @@ -19,6 +20,7 @@ StatsModels = "3eaba693-59b7-5ba5-a881-562e759f1c8d"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"

[compat]
AdvancedVI = "0.2.11"
DataFrames = "1"
Distributions = "0.25"
Documenter = "0.27, 1"
Expand Down
4 changes: 2 additions & 2 deletions src/CRRao.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ module CRRao

using DataFrames, GLM, Turing, StatsModels, StatsBase
using StatsBase, Distributions, LinearAlgebra
using Optim, NLSolversBase, Random, HypothesisTests
using Optim, NLSolversBase, Random, HypothesisTests, AdvancedVI
import StatsBase: coef, coeftable, r2, adjr2, loglikelihood, aic, bic, predict, residuals, cooksdistance, fit
import HypothesisTests: pvalue

Expand Down Expand Up @@ -396,7 +396,7 @@ export LinearRegression, LogisticRegression, PoissonRegression, NegBinomRegressi
export Prior_Ridge, Prior_Laplace, Prior_Cauchy, Prior_TDist, Prior_HorseShoe, Prior_Gauss
export CRRaoLink, Logit, Probit, Cloglog, Cauchit, fit
export coef, coeftable, r2, adjr2, loglikelihood, aic, bic, sigma, predict, residuals, cooksdistance, BPTest, pvalue
export FrequentistRegression, BayesianRegression
export FrequentistRegression, BayesianRegressionMCMC, BayesianRegressionVI

include("random_number_generator.jl")
include("general_stats.jl")
Expand Down
26 changes: 22 additions & 4 deletions src/bayesian/getter.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
function predict(container::BayesianRegression{:LinearRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
function predict(container::BayesianRegressionMCMC{:LinearRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
X = modelmatrix(container.formula, newdata)

params = get_params(container.chain[prediction_chain_start:end,:,:])
Expand All @@ -11,7 +11,16 @@ function predict(container::BayesianRegression{:LinearRegression}, newdata::Data
return vec(mean(predictions, dims=2))
end

function predict(container::BayesianRegression{:LogisticRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
function predict(container::BayesianRegressionVI{:LinearRegression}, newdata::DataFrame, number_of_samples::Int64 = 1000)
X = modelmatrix(container.formula, newdata)

W = rand(CRRao_rng, container.dist, number_of_samples)
W = W[union(container.symbol_to_range[:β]...), :]
predictions = X * W
return vec(mean(predictions, dims=2))
end

function predict(container::BayesianRegressionMCMC{:LogisticRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
X = modelmatrix(container.formula, newdata)

params = get_params(container.chain[prediction_chain_start:end,:,:])
Expand All @@ -24,7 +33,16 @@ function predict(container::BayesianRegression{:LogisticRegression}, newdata::Da
return vec(mean(container.link.link_function.(z), dims=2))
end

function predict(container::BayesianRegression{:NegativeBinomialRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
function predict(container::BayesianRegressionVI{:LogisticRegression}, newdata::DataFrame, number_of_samples::Int64 = 1000)
X = modelmatrix(container.formula, newdata)

W = rand(CRRao_rng, container.dist, number_of_samples)
W = W[union(container.symbol_to_range[:β]...), :]
z = X * W
return vec(mean(container.link.link_function.(z), dims=2))
end

function predict(container::BayesianRegressionMCMC{:NegativeBinomialRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
X = modelmatrix(container.formula, newdata)

params = get_params(container.chain[prediction_chain_start:end,:,:])
Expand All @@ -37,7 +55,7 @@ function predict(container::BayesianRegression{:NegativeBinomialRegression}, new
return vec(mean(exp.(z), dims=2))
end

function predict(container::BayesianRegression{:PoissonRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
function predict(container::BayesianRegressionMCMC{:PoissonRegression}, newdata::DataFrame, prediction_chain_start::Int64 = 200)
X = modelmatrix(container.formula, newdata)

params = get_params(container.chain[prediction_chain_start:end,:,:])
Expand Down
Loading
Loading