Connecting Look and Feel: Associating the visual and tactile properties of physical materials
Wenzhen Yuan*, Shaoxiong Wang*, Siyuan Dong, Edward Adelson (* indicates equal contributions)
CVPR 2017 (oral)
Here we provide examples of infering look from feel.
The network structure
Here is the list of libraries you need to install to execute the code:
- keras == 1.2.2
- numpy
- scipy
- matplotlib
- scikit-learn
- pprint
- argparse
All of them can be installed via pip
, e.g.
pip install keras==1.2.2
CUDA_VISIBLE_DEVICES=0 python end2end_train.py -l test -m 2 -c _shop -g 0
usage: end2end_train.py [-h] [-l logdir] [-c cat] [-g gpu] [-w weight_fn]
[-t test] [-m given_margin]
Training Alexnet model for fabric joint embedding
optional arguments:
-h, --help show this help message and exit
-l logdir, --logdir logdir
path to store evaluation
-c cat, --cat cat category
-g gpu, --gpu gpu gpu
-w weight_fn, --weight_fn weight_fn
weights
-t test, --test test test
-m given_margin, --given_margin given_margin
margin for contrastive loss
@article{yuan2017connecting,
title={Connecting Look and Feel: Associating the visual and tactile properties of physical materials},
author={Yuan, Wenzhen and Wang, Shaoxiong and Dong, Siyuan and Adelson, Edward},
journal={arXiv preprint arXiv:1704.03822},
year={2017}
}