Skip to content

wufengbin123/detect_steel_number

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

比赛地址

智能盘点—钢筋数量AI识别

环境依赖

ubuntu, python3, tensorflow, keras, skimage, opencv-python, numpy, pandas, matplotlib等

我的方案

关于检测/分割模型选择

尝试了retinanet、faster rcnn、fpn和msak rcnn,其中mask rcnn得分0.980,从kaggle上得知使用U-Net全卷积网络进行语义分割可能效果比较好,目前还没有尝试。

关于预训练模型

经过后期大佬分享,建议选用coco预训练模型。

关于优化器选择

  • 前期选择默认SGD优化器,后来在60epoch后选择用Adam优化器。
  • I found that the model reaches a local minima faster when trained using Adam optimizer compared to default SGD optimizer。

关于学习率策略

每隔25epoch,学习率下降10倍比较好。

关于训练策略

Train in 3 stages: on 512x512 crops containing ships, then finetune on 1024x1024, and finally on 2048x2048. Inference on full-sized 2000x2666 images(由于时间关系没有尝试)

关于图像尺寸

图像尺寸越大越好,但是注意至少要为2^6倍数,受限于硬件条件我这里是2048*2048。

关于多尺度训练

每次加载图像数据,随机选择一个图像尺寸来read image,这样可以让模型适应于检测目标尺寸变化较大的场景。比如图像size, 可以从这个列表中选取[514+i*32, 1024], i表示训练iter

关于数据增强

我不确定数据增强是否有很大效果,下面是我的数据增强方式:

augmentation = iaa.Sometimes(0.6,
                             iaa.Noop(),
                             iaa.OneOf(
                                 [
                                     iaa.Fliplr(0.5),
                                     iaa.Flipud(0.5),
                                     iaa.GaussianBlur(sigma=(0.0, 3.0)),
                                     iaa.AdditiveGaussianNoise(scale=(0, 0.02 * 255)),
                                     iaa.CoarseDropout(0.02, size_percent=0.5),
                                     # iaa.Add((-40, 40), per_channel=0.5),
                                     # iaa.WithChannels(0, iaa.Affine(rotate=(0, 45))),
                                     iaa.Multiply((0.8, 1.5)),
                                     # iaa.Superpixels(p_replace=0.1, n_segments=(16, 32))
                                 ]
                             ))

使用方法

1. Clone this repository

git clone https://github.com/HarleysZhang/detect_steel_number.git

2. Install dependencies

pip3 install -r requirements.txt

3. Run setup from the repository root directory

python3 setup.py install

4.Download the data

After download the data, put it into /path/samples/gangjin/dataset, file structure is:

-gangjin
  - dataset/
    - rain/
      - xxx.jpg
      ...
      - via_region_data.json
    - val/
      - xxx.jpg
      ...
      - via_region_data.json
    - test/
      - xxx.jpg
  - train_labels.csv

5.Oversample data (Optional)

cd samples/gangjin/
python3 oversample_data.py
python3 read_json.py

6. convert the csv format to json format (Optional)

python3 read_json.py

7. train the model

python gangjin.py train --dataset=./datasets/ --weights=coco

8. predict

python3 predict.py

模型效果

DCIC 钢筋数量识别 baseline 0.98+

Reference

Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

About

DCIC 钢筋数量AI识别 baseline 0.98+

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%