Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Special case dkd_svs_mslaser_msspnav DICOM #152

Merged
merged 2 commits into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements.yml
Original file line number Diff line number Diff line change
Expand Up @@ -7,4 +7,4 @@ dependencies:
- scipy==1.13.*
- brukerapi>=0.1.8
- pandas
- nifti-mrs>=1.3.0
- nifti-mrs>=1.3.2
68 changes: 62 additions & 6 deletions spec2nii/Siemens/dicomfunctions.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,8 +177,7 @@ def multi_file_dicom(files_in, fname_out, tag, verbose):
print(f'Output groups: {group_ind}')

nifti_mrs_out, fnames_out = [], []
for idx, gr in enumerate(group_ind):

for gr in group_ind:
# If data shape, orientation, dwelltime match then
# proceed
def not_equal(lst):
Expand All @@ -205,9 +204,8 @@ def not_equal(lst):
else:
combined_data = data_in_gr[0]

# Add dimension information (if not None for default)
if tag:
meta_used.set_dim_info(0, tag)
# Special cases and dim tagging
combined_data, meta_used = special_case_sequences(combined_data, meta_used, img, tag, reference[gr[0]])

# Create NIFTI MRS object.
try:
Expand Down Expand Up @@ -702,7 +700,9 @@ def set_standard_def(nifti_mrs_key, location, key, cast=None):

def identify_integrated_references(img, inst_num):
'''Heuristics for identifying integrated reference scans in known sequences.
Sequences handled: CMRR svs_slaserVOI_dkd(2)
Sequences handled:
- CMRR svs_slaserVOI_dkd(2)
- dkd_svs_(m)slaser_msspnav

:param img: nibable dicom image

Expand Down Expand Up @@ -771,5 +771,61 @@ def identify_integrated_references(img, inst_num):
return 1, '_vapor_ovs_rfoff'
else:
return 0, ''
elif (re.search(r'dkd_svs_mslaser_msspnav$', seq_file_name)
and xprot[('sSpecPara', 'lAutoRefScanMode')] == 8.0):
num_ref = int(xprot[('sSpecPara', 'lAutoRefScanNo')])
num_dyn = int(xprot[('lAverages',)])
if True:
# This True should be replaced with the flag to control MEGA
total_dyn = num_dyn * 2 + (num_ref * 4)
else:
total_dyn = num_dyn + (num_ref * 4)

# Note instance number indexes from 1
if inst_num <= num_ref:
# print(f'case 1: {inst_num} <= {num_ref}')
# Start references
return 1, '_ws_ovs_off'
elif (inst_num > (num_dyn + num_ref)) and (inst_num < (num_dyn + num_ref * 4)):
# print(f'case 2: {inst_num}')
# Empty scans, all zeros
return 2, '_empty_data'
elif inst_num > (total_dyn - num_ref):
# print(f'case 1: {inst_num} > {(total_dyn - num_ref)}')
# End references
return 1, '_ws_ovs_off'
else:
# print(f'no case: {inst_num}')
return 0, ''
else:
return 0, ''


def special_case_sequences(combined_data, meta_used, img, tag, ref_status):

fullcsa = csar.get_csa_header(img.dcm_data, csa_type='series')
if fullcsa is not None:
xprot = parse_buffer(fullcsa['tags']['MrPhoenixProtocol']['items'][0])
seq_file_name = xprot[('tSequenceFileName',)].strip('"').lower()
else:
seq_file_name = ''

if re.search(r'dkd_svs_mslaser_msspnav$', seq_file_name)\
and ref_status == 0:
'''
The dkd_svs_mslaser_msspnav sequence
This sequence contains both MEGA j-difference editing and metabolite cycling
'''
combined_data = np.reshape(
combined_data,
combined_data.shape[:4] + (2, -1, 2,)
)
meta_used.set_dim_info(0, 'DIM_EDIT')
meta_used.set_dim_info(2, 'DIM_METCYCLE')
meta_used.set_dim_info(1, 'DIM_DYN')

else:
# Add dimension information (if not None for default)
if tag:
meta_used.set_dim_info(0, tag)
return combined_data, meta_used
Loading