Skip to content

[ECCV 2022] Offical Pytorch implementation of "VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data"

License

Notifications You must be signed in to change notification settings

wkom/VirtualPose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data (ECCV 2022)

quality result

Introduction

This is the official Pytorch implementation for: VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data overall pipeline

Installation

pip install -r requirement.txt
python setup.py develop

Data preparation

The directory tree should look like this:

${ROOT}
|-- data
    |-- MSCOCO
    |   |-- annotations
    |   |   |-- person_keypoints_train2017.json
    |   |-- images
    |   |   |-- train2017
    |-- MuCo-3DHP
    |   |-- images
    |   |   |-- augmented_set
    |   |   |-- unaugmented_set
    |   |-- MuCo-3DHP.json
    |-- MuPoTS-3D
    |   |-- cameras.pkl
    |   |-- images
    |   |   |-- TS1
    |   |   |-- ...
    |   |   |-- TS20
    |   |-- MuPoTS-3D.json
    |-- panoptic-toolbox
    |   |-- data
    |   |-- data_hmor
    |   |   |-- 160224_haggling1
    |   |   |-- 160224_mafia1
    |   |   |-- ...
    |   |   |-- train_cam.pkl
    |   |   |-- val_cam.pkl
    |   |-- clean_train.pkl 
    |   |-- clean_valid.pkl 
    |   |-- pack.py
|-- models
    |-- pose_resnet_152_384x288.pth.tar

Training

We use 4 NVIDIA V100 with 32GB GPU memory for training.

CMU Panoptic dataset

Train the 2D pose estimation and human detection backbone with 2 gpus:

python run/train_3d.py --cfg configs/coco/backbone_res152_mix_panoptic.yaml --gpus 2

Train the root depth estimator and 3D pose estimator with 4 gpus:

python run/train_3d.py --cfg configs/panoptic/synthesize_full.yaml --gpus 4

MuCo-3DHP and MuPoTS-3D datasets

Train the 2D pose estimation and human detection backbone with 2 gpus:

python run/train_3d.py --cfg configs/coco/backbone_res152_mix_muco.yaml --gpus 2

Train the root depth estimator and 3D pose estimator with 4 gpus:

python run/train_3d.py --cfg configs/muco/synthesize_full.yaml --gpus 4

Evaluation

Our pre-trained models are available for download from Google drive or Onedrive.

CMU Panoptic dataset

Inference with 4 gpus:

python run/validate_3d.py --cfg configs/panoptic/synthesize_full_inference.yaml --gpus 4

MuCo-3DHP and MuPoTS-3D datasets

Inference with 4 gpus:

python run/validate_3d.py --cfg configs/muco/synthesize_full_inference.yaml --gpus 4

The results are in ${ROOT}/mupots_results/$, then use the evaluation code provided by MuPoTS-3D dataset to evaluate the results.

Citing

If our code helps your research, please consider citing the following paper:

@inproceedings{su2022virtualpose,
    title={VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data},
    author={Su, Jiajun and Wang, Chunyu and Ma, Xiaoxuan and Zeng, Wenjun and Wang, Yizhou},
    booktitle={European Conference on Computer Vision},
    pages={55--71},
    year={2022},
    organization={Springer}
}

Acknowledgement

This repo is built on https://github.com/microsoft/voxelpose-pytorch.

About

[ECCV 2022] Offical Pytorch implementation of "VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages