Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints (NeurIPS '23)
This repository contains the code and experiments for the NeurIPS 2023 paper Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints by Alistair White, Niki Kilbertus, Maximilian Gelbrecht, and Niklas Boers.
With Julia installed, instantiate the environment by opening the Julia Pkg REPL and doing:
(@v1.9) pkg> activate StabilizedNDEs
(StabilizedNDEs) pkg> instantiate
To run experiments from the command line, do:
julia --project=. ./main.jl --experiment two_body_problem \
--rng-seed 1 --precision Float64 --gamma 8 --augment-dim 0 \
--layers 2 --width 128 --activation relu \
--T 10 --dt 0.1 --steps 3 --n-train 30 --n-valid 10 \
--optimiser-rule AdamW --optimiser-hyperparams "gamma=1e-6" \
--epochs 1000 --schedule-file "schedule.toml" \
--sensealg BacksolveAdjoint --vjp ZygoteVJP \
--manual-gc --results-file "results.csv"
For full details of the command line arguments, do julia --project=. ./main.jl --help
, or else simply look at the file command_line.jl.
If you find our work useful, please cite it!
@inproceedings{white2023stabilized,
title = {Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints},
author = {White, Alistair and Kilbertus, Niki and Gelbrecht, Maximilian and Boers, Niklas},
booktitle = {Advances in Neural Information Processing Systems},
year = {2023},
}