Skip to content

NaturalProver: Grounded Mathematical Proof Generation with Language Models

License

Notifications You must be signed in to change notification settings

wellecks/naturalprover

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NaturalProver: Grounded Mathematical Proof Generation with Language Models

NaturalProver: Grounded Mathematical Proof Generation with Language Models
Sean Welleck*, Jiacheng Liu*, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi

This repo contains:

  • The NaturalProofs-Gen datasets.
  • GPT-3, GPT-J, GPT-2 code for training and generation.
  • Automatic evaluation for proof generation and next-step suggestion.
  • GPT-2 trained model.

Please cite our work if you found the resources in this repository useful:

@inproceedings{welleck2022naturalprover,
    title={NaturalProver: Grounded Mathematical Proof Generation with Language Models},
    author={Sean Welleck and Jiacheng Liu and Ximing Lu and Hannaneh Hajishirzi and Yejin Choi},
    booktitle={Advances in Neural Information Processing Systems},
    editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho},
    year={2022},
    url={https://openreview.net/forum?id=rhdfTOiXBng}
}

Note: this repo has been updated following publication. For the version at publication time, see the neurips2022 branch.

Quick download

To download and unpack the data, models, and other files discussed below:

pip install gdown
python download.py --data --model --other --savedir /path/to/savedir

This creates the following file structure:

data/   # NaturalProofs-Gen datasets
model/  # Pretrained NaturalProver models 
other/  # Additional files (e.g. example predictions)

Data

Quick download with gdown

To download and unpack the NaturalProofs-Gen datasets:

pip install gdown
python download.py --data --savedir ./

This creates the following file structure:

data/base  # Original proofwiki, NaturalProofs-Gen (unsplit), redirects (used in evaluation).
data/gpt3  # NaturalProofs-Gen formatted for GPT-3 fine-tuning + ref-reconstruction for retrieved & provided settings.
data/gptj  # NaturalProofs-Gen formatted for GPT-2/J fine-tuning (similar to data/gpt3).

Within each folder, you will see datasets with varied reference-conditioning (norefs, retrefs, gtrefs) and reference reconstruction (ref-pretrain) settings.

Download with git-lfs

Alternatively, the NaturalProofs-Gen datasets are also stored in the data/ directory using git-lfs:

git-lfs pull

This will create the same file structure discussed above.

GPT3

Finetuning

See npgen/gpt3/finetune_gpt3.sh.

Generation

For full-proof generation,

cd npgen/gpt3
python generate_gpt3_stepwise.py  # see generate_gpt3_stepwise.sh for example arguments

See npgen/gpt3/generate_gpt3_stepwise.sh for example commands for greedy decoding, full-proof sample-and-select, and stepwise++ decoding. Also see npgen/gpt3/generate_gpt3.sh for greedy decoding commands using various models.

For next-step generation:

cd npgen/gpt3
python generate_gpt3.py --ckpt ${CKPT} --refs {no,gt,ret}refs --mode nextstep --core-only

See npgen/gpt3/generate_gpt3.sh for example commands.

Evaluate generations

For an example of running automatic metrics for full-proof generation, first download the naturalprover generations:

pip install gdown
python download.py --other --savedir /path/to/savedir

==> /path/to/savedir/other/naturalprover_generations

Then see this notebook for an example of running the metrics:

notebooks/evaluation.ipynb

The notebook reproduces the GPT-3 automatic metrics in the paper (Table 7).

name gleu f1 kf1 ref_precision ref_recall ref_f1 corpus_ref_halluc
gpt3 24.4 49.96 49.3 29.93 24.73 23.69 17.92
naturalprover-retrieve 26.58 53.02 55.88 38.17 28.48 27.1 2.25
naturalprover 35.27 66 90.07 93.05 86.05 87.08 1.6
naturalprover++ 34.49 65.61 96.39 94.66 95 93.92 1.71

GPT2/J

Finetuning

See npgen/gptj/train_gpt{j,2}.sh for example commands. The script uses Deepspeed, and is based on mallorbc/Finetune_GPTNEO_GPTJ6B.

GPT2 finetuned model

We provide a GPT-2 model fine-tuned with provided in-context references and reference reconstruction.

pip install gdown
python download.py --model --savedir /path/to/savedir

==> /path/to/savedir/model/naturalprover_gpt2

Generation

See commands in:

cd npgen/gptjft
bash eval_gpt2.sh

For GPT-J, see npgen/gptjft/eval_gptj.sh.

Evaluate generations

For an example of running automatic metrics for full-proof generation, first download the naturalprover generations:

pip install gdown
python download.py --other --savedir /path/to/savedir

==> /path/to/savedir/other/naturalprover_generations

Then see this notebook for an example of running the metrics:

notebooks/evaluation.ipynb

We provide GPT-2 and GPT-3-curie generations (provided in-context references, greedy decoding) in /other/naturalprover_generations, and GPT-J generations with greedy decoding and sample-and-select with the constraint value function (10 samples).

Results on the core validation set:

name gleu ref_f1 corpus_ref_halluc
naturalprover-gpt2-greedy 32.06 65.22 6.76
naturalprover-gptj6b-greedy 38.58 79.19 2.96
naturalprover-gptj6b-select10 37.83 88.80 4.84
naturalprover-gpt3curie-greedy 42.39 89.29 1.9

The notebook also shows how to print out a theorem statement and proof. The example proof shown in the notebook is generated with naturalprover-gptj6b-select10. Here is a version converted to Latex:

example

The repo does not have stepwise++ or next-step suggestions for GPT-2/J.

About

NaturalProver: Grounded Mathematical Proof Generation with Language Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published