Fractals made from complex roots of all possible polynomials of certain degree (12 - 24) and small set of complex coefficients (2 or 3)
Source:
https://en.wikipedia.org/wiki/Littlewood_polynomial
https://fse.studenttheses.ub.rug.nl/12857/1/Scriptie__new_.pdf
https://www.reddit.com/r/math/comments/cje7nm/visualizing_subseries_of_complex_valued_functions/
https://fse.studenttheses.ub.rug.nl/14350/1/main.pdf
http://www.gregegan.net/SCIENCE/Littlewood/LittlewoodVideos.html
https://www.uwo.ca/smss/events/imgpdf/Rob-Corless---slides.pdf
http://www.gregegan.net/SCIENCE/Littlewood/Littlewood.html
https://math.ucr.edu/home/baez/roots/beauty.pdf
https://wiegreffe.info/home/fractals-from-complex-roots-of-polynomials
https://math.ucr.edu/home/baez/roots/
https://johncarlosbaez.wordpress.com/2011/12/11/the-beauty-of-roots/
https://www.e-periodica.ch/digbib/view?pid=ens-001:1993:39::181#566
https://mathworld.wolfram.com/PolynomialRoots.html
https://core.ac.uk/download/pdf/328813079.pdf
https://arxiv.org/pdf/1110.1612.pdf
https://arxiv.org/pdf/1907.09464.pdf
https://golem.ph.utexas.edu/category/2009/12/this_weeks_finds_in_mathematic_46.html
https://github.com/evanberkowitz/littlewood
https://github.com/Hasnep/littlewood-matlab
video: https://youtu.be/2K-E6dt8mZM
with 4 coefficients: