Skip to content

Commit

Permalink
Extend CLI parameters and Add Github Actions for Docker . (#11)
Browse files Browse the repository at this point in the history
* Add more extensive argument parsing

* Add more extensive argument parsing

* Add more extensive argument parsing

* Add more extensive argument parsing

* Add Dockerfile, environment.yml and update README.md

* Update readme

* Create docker-publish.yml

* Update docker-publish.yml

* Update README.md

* Update environment.yml

* Update README.md

* Update README.md

* Update README.md

Co-authored-by: Albert Dominguez Mantes <[email protected]>

* "Rename environment.yml"

* Update dockerfile

* Remove gipod.yml

---------

Co-authored-by: Albert Dominguez Mantes <[email protected]>
  • Loading branch information
migueLib and AlbertDominguez authored Jul 2, 2024
1 parent 58b1e99 commit 1b6c228
Show file tree
Hide file tree
Showing 5 changed files with 245 additions and 9 deletions.
99 changes: 99 additions & 0 deletions .github/workflows/docker-publish.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
name: Docker

# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.

on:
# schedule:
# - cron: '21 13 * * *'
push:
branches: [ "main" ]
# Publish semver tags as releases.
tags: [ '*.*.*' ]
pull_request:
branches: [ "main" ]

env:
# Use docker.io for Docker Hub if empty
REGISTRY: ghcr.io
# github.repository as <account>/<repo>
IMAGE_NAME: ${{ github.repository }}


jobs:
build:

runs-on: ubuntu-latest
permissions:
contents: read
packages: write
# This is used to complete the identity challenge
# with sigstore/fulcio when running outside of PRs.
id-token: write

steps:
- name: Checkout repository
uses: actions/checkout@v4

# Install the cosign tool except on PR
# https://github.com/sigstore/cosign-installer
- name: Install cosign
if: github.event_name != 'pull_request'
uses: sigstore/cosign-installer@59acb6260d9c0ba8f4a2f9d9b48431a222b68e20 #v3.5.0
with:
cosign-release: 'v2.2.4'

# Set up BuildKit Docker container builder to be able to build
# multi-platform images and export cache
# https://github.com/docker/setup-buildx-action
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@f95db51fddba0c2d1ec667646a06c2ce06100226 # v3.0.0

# Login against a Docker registry except on PR
# https://github.com/docker/login-action
- name: Log into registry ${{ env.REGISTRY }}
if: github.event_name != 'pull_request'
uses: docker/login-action@343f7c4344506bcbf9b4de18042ae17996df046d # v3.0.0
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}

# Extract metadata (tags, labels) for Docker
# https://github.com/docker/metadata-action
- name: Extract Docker metadata
id: meta
uses: docker/metadata-action@96383f45573cb7f253c731d3b3ab81c87ef81934 # v5.0.0
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}

# Build and push Docker image with Buildx (don't push on PR)
# https://github.com/docker/build-push-action
- name: Build and push Docker image
id: build-and-push
uses: docker/build-push-action@0565240e2d4ab88bba5387d719585280857ece09 # v5.0.0
with:
context: .
platforms: linux/amd64,linux/arm64
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max

# Sign the resulting Docker image digest except on PRs.
# This will only write to the public Rekor transparency log when the Docker
# repository is public to avoid leaking data. If you would like to publish
# transparency data even for private images, pass --force to cosign below.
# https://github.com/sigstore/cosign
- name: Sign the published Docker image
if: ${{ github.event_name != 'pull_request' }}
env:
# https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-an-intermediate-environment-variable
TAGS: ${{ steps.meta.outputs.tags }}
DIGEST: ${{ steps.build-and-push.outputs.digest }}
# This step uses the identity token to provision an ephemeral certificate
# against the sigstore community Fulcio instance.
run: echo "${TAGS}" | xargs -I {} cosign sign --yes {}@${DIGEST}
33 changes: 33 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
FROM mambaorg/micromamba:lunar
LABEL authors="Albert Dominguez, Miguel Ibarra"

# Set the base layer for micromamba
USER root
COPY docker-env-config.yml .

RUN apt-get update -qq && apt-get install -y \
build-essential \
ffmpeg \
libsm6 \
libxext6 \
procps \
git

# Set the environment variable for the root prefix
ARG MAMBA_ROOT_PREFIX=/opt/conda

# Add /opt/conda/bin to the PATH
ENV PATH $MAMBA_ROOT_PREFIX/bin:$PATH

# Install stuff with micromamba
RUN micromamba env create -f docker-env-config.yml && \
micromamba clean --all --yes

# Add environment to PATH
ENV PATH="/opt/conda/envs/spotiflow/bin:$PATH"

# Set the working directory
WORKDIR /spotiflow

# Copy contents of the folder to the working directory
COPY . .
22 changes: 22 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,28 @@ spotiflow-predict PATH

where PATH can be either an image or a folder. By default, the command will use the `general` pretrained model. You can specify a different model by using the `--pretrained-model` flag. Moreover, spots are saved to a subfolder `spotiflow_results` created inside the input folder (this can be changed with the `--out-dir` flag). For more information, please refer to the help message of the CLI (`$ spotiflow-predict -h`).

### Inference (Docker)

Alternatively to installing Spotiflow as command line tool on your operating system, you can also use it directly from our Docker container (thanks to @migueLib for the contribution!). To do so, you can use the following command:

To pull the Docker container from Dockerhub use:
``` console
docker pull weigertlab/spotiflow:main
```

Then, run spotiflow-predict with:
```console
docker run -it -v [/local/input/folder]:/spotiflow/input weigertlab/spotiflow:main spotiflow-predict input/your_file.tif -o .
```
Where:
`-v`: represents the volume flag, which allows you to mount a folder from your local machine to the container.
`/path/to/your/data:/spotiflow`: is the path to the folder containing the image you want to analyze.

Note:
- The current implementation of Spotiflow in Docker only supports CPU inference.



### Inference (API)

The API allows detecting spots in a new image in a few lines of code! Please check the [corresponding example notebook](examples/2_inference.ipynb) and the documentation for a more in-depth explanation.
Expand Down
11 changes: 11 additions & 0 deletions docker-env-config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
name: spotiflow
channels:
- pytorch
- conda-forge
dependencies:
- "python=3.9"
- "pytorch"
- "torchvision"
- "cpuonly"
- pip:
- "spotiflow"
89 changes: 80 additions & 9 deletions spotiflow/cli/predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,35 +17,93 @@

ALLOWED_EXTENSIONS = ("tif", "tiff", "png", "jpg", "jpeg")

def main():
parser = argparse.ArgumentParser("spotiflow-predict",
# Argument parser
def get_args():
parser = argparse.ArgumentParser("spotiflow-predict",
description="Predict spots in image(s) using Spotiflow.")
parser.add_argument("data_path", type=Path, help=f"Path to image file or directory of image files. If a directory, will process all images in the directory.")
parser.add_argument("--pretrained-model", type=str, required=False, default="general", help="Pretrained model name. Defaults to 'general'.")
parser.add_argument("--model-dir", type=str, required=False, default=None, help="Model directory to load. If provided, will override --pretrained-model.")
parser.add_argument("--out-dir", type=Path, required=False, default=None, help="Output directory. If not provided, will create a 'spotiflow_results' subfolder in the input folder and write the CSV(s) there.")

required = parser.add_argument_group(title="Required arguments",
description="Arguments required to run the prediction model")
required.add_argument("data_path",
type=Path,
help=f"Path to image file or directory of image files. If a directory, will process all images in the directory.")
required.add_argument("-pm","--pretrained-model",
type=str, required=False, default="general",
help="Pretrained model name. Defaults to 'general'.")
required.add_argument("-md", "--model-dir",
type=str, required=False, default=None,
help="Model directory to load. If provided, will override --pretrained-model.")
required.add_argument("-o", "--out-dir",
type=Path, required=False, default=None,
help="Output directory. If not provided, will create a 'spotiflow_results' subfolder in the input folder and write the CSV(s) there.")

predict = parser.add_argument_group(title="Prediction arguments",
description="Arguments to change the behaviour of spotiflow during prediction. To keep the default behaviour, do not provide these arguments.")
predict.add_argument("-t", "--probability-threshold",
type=float, required=False, default=None,
help="Probability threshold for peak detection. If None, will load the optimal one. Defaults to None.")
predict.add_argument("-n", "--n-tiles",
type=int, required=False, default=(1, 1), nargs=2,
help="Number of tiles to split the image into. Defaults to (1, 1). This parameter can be used to calculate spots on larger images.")
predict.add_argument("-min", "--min-distance",
type=int, required=False, default=1,
help="Minimum distance between spots for NMS. Defaults to 1.")
predict.add_argument("-eb", "--exclude-border",
action="store_true", required=False,
help="Exclude spots within this distance from the border. Defaults to 0.")
predict.add_argument("-s", "--scale",
type=int, required=False, default=None,
help=" Scale factor to apply to the image. Defaults to None.")
predict.add_argument("-sp", "--subpix",
action="store_true", required=False,
help="Whether to use the stereographic flow to compute subpixel localization. If None, will deduce from the model configuration. Defaults to None.")
predict.add_argument("-p", "--peak-mode",
type=str, required=False, default="fast", choices=["fast", "skimage"],
help="Peak detection mode (can be either 'skimage' or 'fast', which is a faster custom C++ implementation). Defaults to 'fast'.")
predict.add_argument("-norm", "--normalizer",
type=str, required=False, default="auto",
help="Normalizer to use. If None, will use the default normalizer. Defaults to 'auto' (percentile-based normalization with p_min=1, p_max=99.8).")
predict.add_argument("-v", "--verbose",
action="store_true", required=False,
help="Print verbose output. Defaults to False.")
predict.add_argument("-d", "--device",
type=str, required=False, default="auto", choices=["auto", "cpu", "cuda", "mps"],
help="Device to run model on. Defaults to 'auto'.")

args = parser.parse_args()
return args


def main():
# Get arguments from command line
args = get_args()
log.info(f"Spotiflow - version {__version__}")

# Choose prediction method from_folder or from_pretrained
if args.model_dir is not None:
model = Spotiflow.from_folder(args.model_dir)
log.info("Given local model loaded.")
else:
model = Spotiflow.from_pretrained(args.pretrained_model)

# Try to compile model
try:
model = torch.compile(model)
except RuntimeError as _:
log.info("Could not compile model. Will proceed without compilation.")


# Set out_dir
out_dir = args.out_dir

# Check if data_path is a file or directory
# If it's a file , check if it is a valid image file
if args.data_path.is_file():
assert args.data_path.suffix[1:] in ALLOWED_EXTENSIONS, f"File {args.data_path} is not a valid image file. Allowed extensions are: {ALLOWED_EXTENSIONS}"
image_files = [args.data_path]
if out_dir is None:
out_dir = args.data_path.parent/"spotiflow_results"


# If directory, get all image files in the directory
elif args.data_path.is_dir():
image_files = sorted(
tuple(chain(*tuple(args.data_path.glob(f"*.{ext}") for ext in ALLOWED_EXTENSIONS)))
Expand All @@ -57,15 +115,28 @@ def main():
else:
raise ValueError(f"Path {args.data_path} does not exist!")

# Create out_dir if it doesn't exist
out_dir.mkdir(exist_ok=True, parents=True)

# Predict spots in images and write to CSV
images = [imread(img) for img in image_files]
for img, fname in tqdm(zip(images, image_files), desc="Predicting", total=len(images)):
spots, _ = model.predict(img, verbose=False)
spots, _ = model.predict(img,
prob_thresh=args.probability_threshold,
n_tiles=tuple(args.n_tiles),
min_distance=args.min_distance,
exclude_border=args.exclude_border,
scale=args.scale,
subpix=args.subpix,
peak_mode=args.peak_mode,
normalizer=args.normalizer,
verbose=args.verbose,
device=args.device,)
write_coords_csv(spots, out_dir/f"{fname.stem}.csv")

return 0


if __name__ == "__main__":
import sys
sys.exit(main())

0 comments on commit 1b6c228

Please sign in to comment.