-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #71 from mei1127/add_lstm
completed lstm
- Loading branch information
Showing
11 changed files
with
623 additions
and
61 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
'use strict'; | ||
|
||
import {concat} from './concat.js'; | ||
import {lstmCell} from './lstm_cell.js'; | ||
import {reshape, squeeze} from './reshape.js'; | ||
import {sizeOfShape, Tensor} from './lib/tensor.js'; | ||
import {sigmoid} from './sigmoid.js'; | ||
import {slice} from './slice.js'; | ||
import {tanh} from './tanh.js'; | ||
import {validateLstmParams} from './lib/validate-input.js'; | ||
|
||
/** | ||
*Long Short-Term Memory [LSTM] recurrent network uses an input, output, forget, | ||
*and cell gate to compute the output state that rolls into the output across the | ||
* temporal sequence of the network. | ||
* @param {Tensor} input | ||
* @param {Tensor} weight | ||
* @param {Tensor} recurrentWeight | ||
* @param {Number} steps | ||
* @param {Number} hiddenSize | ||
* @param {MLLstmOptions} options | ||
* @return {Array.<Tensor>} | ||
*/ | ||
export function lstm(input, weight, recurrentWeight, steps, hiddenSize, | ||
{bias, recurrentBias, peepholeWeight, initialHiddenState, | ||
initialCellState, returnSequence = false, direction = 'forward', layout = 'iofg', | ||
activations = [sigmoid, tanh, tanh]} = {}) { | ||
validateLstmParams(...arguments); | ||
const numDirections = (direction == 'both' ? 2 : 1); | ||
const batchSize = input.shape[1]; | ||
const inputSize = input.shape[2]; | ||
|
||
let hiddenState; | ||
let cellState; | ||
if (initialHiddenState) { | ||
hiddenState = initialHiddenState; | ||
} else { | ||
const initialHiddenStateShape = [numDirections, batchSize, hiddenSize]; | ||
hiddenState = new Tensor( | ||
initialHiddenStateShape, new Array(sizeOfShape(initialHiddenStateShape)).fill(0)); | ||
} | ||
if (initialCellState) { | ||
cellState = initialCellState; | ||
} else { | ||
const initialCellState = [numDirections, batchSize, hiddenSize]; | ||
cellState = new Tensor( | ||
initialCellState, new Array(sizeOfShape(initialCellState)).fill(0)); | ||
} | ||
|
||
let sequence; | ||
const currentWeight = []; | ||
const currentRecurrentWeight = []; | ||
const currentBias = []; | ||
const currentRecurrentBias = []; | ||
const currentPeepholeWeight = []; | ||
|
||
for (let dir = 0; dir < numDirections; ++dir) { | ||
currentWeight.push(squeeze(slice(weight, [dir, 0, 0], [1, 4 * hiddenSize, inputSize]))); | ||
currentRecurrentWeight.push(squeeze(slice(recurrentWeight, | ||
[dir, 0, 0], [1, 4 * hiddenSize, hiddenSize]))); | ||
currentBias.push(bias ? (squeeze(slice(bias, [dir, 0], [1, 4 * hiddenSize]))) : null); | ||
currentRecurrentBias.push(recurrentBias ? | ||
(squeeze(slice(recurrentBias, [dir, 0], [1, 4 * hiddenSize]))) : null); | ||
currentPeepholeWeight.push(peepholeWeight ? | ||
(squeeze(slice(peepholeWeight, [dir, 0], [1, 3 * hiddenSize]))) : null); | ||
} | ||
|
||
for (let step = 0; step < steps; ++step) { | ||
const currentHidden = []; | ||
const currentCell = []; | ||
let nextHidden = null; | ||
let nextCell = null; | ||
|
||
for (let dir = 0; dir < numDirections; ++dir) { | ||
currentHidden.push(squeeze(slice(hiddenState, [dir, 0, 0], [1, batchSize, hiddenSize]))); | ||
currentCell.push(squeeze(slice(cellState, [dir, 0, 0], [1, batchSize, hiddenSize]))); | ||
} | ||
|
||
for (let dir = 0; dir < numDirections; ++dir) { | ||
const slice0 = (dir == 1 || direction == 'backward' ? steps - step - 1 : step); | ||
const currentInput = squeeze(slice(input, [slice0, 0, 0], [1, batchSize, inputSize])); | ||
|
||
const results = lstmCell( | ||
currentInput, currentWeight[dir], currentRecurrentWeight[dir], | ||
currentHidden[dir], currentCell[dir], hiddenSize, {bias: currentBias[dir], | ||
recurrentBias: currentRecurrentBias[dir], peepholeWeight: currentPeepholeWeight[dir], | ||
layout: layout, activations: activations}); | ||
|
||
const output = reshape(results[0], [1, null, hiddenSize]); | ||
const cell = reshape(results[1], [1, null, hiddenSize]); | ||
|
||
nextHidden = (nextHidden ? concat([nextHidden, output], 0) : output); | ||
nextCell = (nextCell ? concat([nextCell, cell], 0) : cell); | ||
} | ||
|
||
hiddenState = nextHidden; | ||
cellState = nextCell; | ||
|
||
if (returnSequence) { | ||
nextHidden = reshape(nextHidden, [1, numDirections, null, hiddenSize]); | ||
sequence = (sequence ? concat([sequence, nextHidden], 0) : nextHidden); | ||
} | ||
} | ||
|
||
return (sequence ? [hiddenState, cellState, sequence] : [hiddenState, cellState]); | ||
} |
Oops, something went wrong.