conda env: /penngao_conda_environment.yaml
pip package: /penngao_pip_packages.txt
HITT-h: /examples/training/hypernymy/datasets/hypernymydetection.tsv.gz
HITT-a: /examples/training/attribute/datasets/attributedetection.tsv.gz
HITT-m: /examples/training/multirelation/datasets/multi-relation-detection-detection.tsv.gz
Statistical information of datasets is below:
Datasets | Train | Dev | Test |
---|---|---|---|
HITT-h | 18,847 | 6,302 | 6,292 |
HITT-a | 40,412 | 13,449 | 13,451 |
HITT-m | 19,100 | 6,120 | 6,515 |
Hypernymy Detection: /examples/training/hypernymy/training_hypernymy_benchmark.py
Concept Attribute Detection: /examples/training/attribute/training_attribute_benchmark.py
Multi-relation Detection: /examples/training/multirelation/training_multi_relation_benchmark.py
python training_*_benchmark.py
Binary relation detection:
Model | Dataset | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|
D-Tensor | HITT-h | 87.78 | 74.88 | 61.56 | 67.45 |
D-Tensor | HITT-a | 83.27 | 70.15 | 60.18 | 65.38 |
Bran | HITT-h | 91.52 | 82.31 | 79.68 | 81.32 |
Bran | HITT-a | 85.34 | 71.25 | 65.48 | 68.56 |
U_Teal | HITT-h | 78.47 | 41.55 | 9.38 | 15.30 |
U_Teal | HITT-a | 77.36 | 40.15 | 10.16 | 16.20 |
S_Teal | HITT-h | 90.85 | 87.03 | 84.31 | 85.56 |
S_Teal | HITT-a | 89.90 | 74.22 | 73.44 | 73.83 |
AS_Teal | HITT-h | 93.36 | 88.67 | 86.22 | 87.89 |
AS_Teal | HITT-a | 92.92 | 80.89 | 79.60 | 79.70 |
CEE | HITT-h | 92.34 | 85.25 | 83.56 | 84.46 |
CEE | HITT-a | 88.56 | 72.17 | 70.86 | 71.56 |
Ours | HITT-h | 93.00 | 87.88 | 89.79 | 88.18 |
Ours | HITT-a | 91.09 | 77.66 | 81.02 | 79.31 |
D-Tensor: Dual tensor model for detecting asymmetric lexicosemantic relations. EMNLP 2017
Bran: Simultaneously self-attending to all mentions for full-abstract biological relation extraction. NAACL 2018
Teal: Improving hypernymy prediction via taxonomy enhanced adversarial learning. AAAI 2019
CCE: Learning Conceptual-Contextual Embeddings for Medical Text. AAAI 2020
Multi-relation detection:
Model | Dataset | Accuracy | Macro_p | Macro_R | Macro_F1 |
---|---|---|---|---|---|
D-Tensor | HITT-m | 75.30 | 76.52 | 73.34 | 74.78 |
Bran | HITT-m | 78.89 | 79.32 | 75.18 | 77.56 |
CCE | HITT-m | 80.12 | 65.89 | 75.30 | 69.53 |
Ours | HITT-m | 81.57 | 82.23 | 81.56 | 81.80 |
[SentenceTransformers](SentenceTransformers Documentation — Sentence-Transformers documentation (sbert.net))
refer to Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks(EMNLP 2019)