Skip to content

waveupHQ/smart-autonomous-assistants

Repository files navigation

Smart Autonomous Assistants (SAAs) Project

Table of Contents

Introduction

The Smart Autonomous Assistants (SAAs) project is a sophisticated AI-driven system designed to orchestrate multiple AI assistants to accomplish complex tasks. By leveraging the power of large language models and a modular architecture, this system can break down objectives, execute sub-tasks in parallel, and refine results to produce coherent outputs.

Features

  • Multi-assistant orchestration for complex task completion
  • Support for multiple LLM providers (Claude, GPT, Gemini)
  • Parallel processing of subtasks using SAAsWorkers
  • Modular architecture for easy extension and customization
  • Automated task breakdown and execution
  • Integration with external tools (e.g., TavilyTools)
  • File operation capabilities for input/output handling
  • Detailed logging of workflow execution
  • Fallback mechanisms for improved reliability

Project Structure

smart-autonomous-assistants/
├── src/
│   ├── __init__.py
│   ├── assistants.py
│   ├── config.py
│   ├── main.py
│   ├── orchestrator.py
│   ├── workers.py
│   └── utils/
│       ├── exceptions.py
│       └── logging.py
├── tests/
│   ├── __init__.py
│   ├── test_orchestrator.py
│   └── test_workers.py
├── .github/
│   └── workflows/
│       └── ci.yml
├── output/
├── README.md
├── CHANGELOG.md
├── setup.py
├── pyproject.toml
├── requirements.txt
├── requirements-dev.txt
├── .gitignore
└── .env

Module Descriptions

  1. src/assistants.py: Implements dynamic assistant creation supporting multiple LLM providers and manages file operations and tool integration.
  2. src/config.py: Handles configuration settings, environment variables, and API key management.
  3. src/main.py: Provides the command-line interface using Typer for running workflows.
  4. src/orchestrator.py: Implements the core workflow management logic and coordinates interactions between assistants.
  5. src/workers.py: Implements the SAAsWorkers class for parallel task processing and planning.

Dependencies

Main dependencies include:

  • phidata==2.4.22
  • pydantic==2.7.4
  • python-dotenv==1.0.1
  • typer==0.12.3
  • rich==13.7.1

For a full list of dependencies, see requirements.txt and requirements-dev.txt.

Setup and Installation

  1. Clone the repository
  2. Create and activate a virtual environment
  3. Install dependencies: pip install -r requirements.txt
  4. Create a .env file with your API keys and VertexAI settings

Configuration

Update the settings in src/config.py to configure LLM models and other parameters.

Usage

Run a workflow using:

python -m src.main run-workflow "Your objective here"

Development Setup

  1. Install development dependencies: pip install -r requirements-dev.txt
  2. Install pre-commit hooks: pre-commit install

Testing

Run tests using pytest:

pytest

Continuous Integration

The project uses GitHub Actions for CI/CD, running tests and checks on each push and pull request.

System Architecture

graph TD
    A[User Input] --> B[main.py]
    B --> C[Orchestrator]
    C --> D[MainAssistant]
    C --> E[SAAsWorkers]
    E --> F[SubAssistant 1]
    E --> G[SubAssistant 2]
    E --> H[SubAssistant 3]
    C --> I[RefinerAssistant]
    D --> C
    E --> C
    I --> C
    C --> J[File Operations]
    J --> K[Output Directory]
    C --> L[Exchange Log]
    L --> K
    M[config.py] --> C
    N[assistants.py] --> C
    O[workers.py] --> E
Loading

This architecture allows for a flexible and extensible system that can handle complex, multi-step tasks by leveraging the strengths of multiple AI assistants and parallel processing capabilities.

Contributing

Contributions are welcome! Please read the CONTRIBUTING.md file for guidelines.

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

A system for orchestrating multiple AI assistants to accomplish complex tasks

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages