Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add decision trees example #492

Merged
merged 2 commits into from
Dec 25, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
228 changes: 228 additions & 0 deletions colabs/scikit/wandb_decision_tree.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
{
SauravMaheshkar marked this conversation as resolved.
Show resolved Hide resolved
SauravMaheshkar marked this conversation as resolved.
Show resolved Hide resolved
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Decision Trees",
"provenance": [],
"collapsed_sections": [
"bE1OZxeIwPqg",
"_N6qEF3cvIpN",
"_vdIezY_zb_9",
"OGV1c4VYJMGa",
"H8IIKXd0PFL8",
"kycxKC7ER7lW",
"4wWuB4NZl3h_",
"BX31c0s8MVu5",
"c6PoNscLNuog",
"3Cf152r2NK1M",
"a_HO0jHMyyyP",
"ahE27LgSzUVx",
"FaENg6O44dso",
"t3K1L5UWSZCL"
],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "e6qvOYJV8BQw"
},
"source": [
"## Author: [@SauravMaheshkar](https://twitter.com/MaheshkarSaurav)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BL5XadIr0MbM"
},
"source": [
"# Packages 📦 and Basic Setup\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fZH0PUfw0OBV"
},
"source": [
"## Install Packages"
]
},
{
"cell_type": "code",
"metadata": {
"id": "_uk-bdosSzwk"
},
"source": [
"%%capture\n",
"## Install Sklearn\n",
"!pip install -U scikit-learn\n",
"## Install the latest version of wandb client 🔥🔥\n",
"!pip install -q --upgrade wandb"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "UgQLiLtz0STo"
},
"source": [
"## Project Configuration using **`wandb.config`**"
]
},
{
"cell_type": "code",
"metadata": {
"id": "OvABqBlB0VhB"
},
"source": [
"import os\n",
"import wandb\n",
"\n",
"## Importing Libraries\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.datasets import load_iris\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor\n",
"\n",
"# Paste your api key here\n",
"os.environ[\"WANDB_API_KEY\"] = '...'\n",
"\n",
"# Feel free to change these and experiment !!\n",
"config = wandb.config\n",
"config.max_depth = 5\n",
"config.min_samples_split = 2\n",
"config.clf_criterion = \"gini\"\n",
"config.reg_criterion = \"mse\"\n",
"config.splitter = \"best\"\n",
"config.dataset = \"iris\"\n",
"config.test_size = 0.2\n",
"config.random_state = 42\n",
"config.labels =['setosa', 'versicolor', 'virginica']"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "OGV1c4VYJMGa"
},
"source": [
"# 💿 Dataset\n",
"---"
]
},
{
"cell_type": "code",
"metadata": {
"id": "lWnhwnPI2NWD"
},
"source": [
"## Loading the Dataset\n",
"iris = load_iris(return_X_y = True, as_frame= True)\n",
"dataset = iris[0]\n",
"target = iris[1]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "kycxKC7ER7lW"
},
"source": [
"# ✍️ Model Architecture\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4wWuB4NZl3h_"
},
"source": [
"## Classification"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vElZpyEQtXzX"
},
"source": [
"run = wandb.init(project='...', entity='...', config = config)\n",
"\n",
"X, y = load_iris(return_X_y=True)\n",
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = config.test_size, random_state = config.random_state)\n",
"\n",
"clf = DecisionTreeClassifier(\n",
" max_depth=config.max_depth,\n",
" min_samples_split=config.min_samples_split,\n",
" criterion=config.clf_criterion,\n",
" splitter=config.splitter\n",
")\n",
"clf = clf.fit(x_train,y_train)\n",
"\n",
"y_pred = clf.predict(x_test)\n",
"\n",
"# Visualize Confustion Matrix\n",
"wandb.sklearn.plot_confusion_matrix(y_test, y_pred, config.labels)\n",
"\n",
"run.finish()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "BX31c0s8MVu5"
},
"source": [
"## Regression"
]
},
{
"cell_type": "code",
"metadata": {
"id": "1kBLTtH4MbsY"
},
"source": [
"run = wandb.init(project='...', entity='...', config = config)\n",
"\n",
"X, y = load_iris(return_X_y=True)\n",
"\n",
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = config.test_size, random_state = config.random_state)\n",
"\n",
"reg = DecisionTreeRegressor(\n",
" max_depth=config.max_depth,\n",
" min_samples_split=config.min_samples_split,\n",
" criterion=config.reg_criterion,\n",
" splitter=config.splitter\n",
")\n",
"\n",
"reg = reg.fit(x_train,y_train)\n",
"\n",
"# All regression plots\n",
"wandb.sklearn.plot_regressor(reg, x_train, x_test, y_train, y_test, model_name='DecisionTreeRegressor')\n",
"\n",
"run.finish()"
],
"execution_count": null,
"outputs": []
}
]
}