Skip to content
/ aimui Public
forked from jialin-wu-02/aimde

Aim — a super-easy way to record, search and compare 1000s of ML training runs. This repo contains the web UI component of Aim.

License

Notifications You must be signed in to change notification settings

vvardges/aimui

 
 

Repository files navigation

A super-easy way to record, search and compare AI experiments.

GitHub Top Language Image pulls License


This project hosts the Aim UI code. Please file issues at Aim primary repo.


PLAY with live demo and check out a short INTRO VIDEO


Integrate seamlessly with your favorite tools

Getting started in three steps

1. Install Aim in your training environment

$ pip install aim

2. Integrate Aim with your code

Flexible integration for any Python script
import aim

# Save inputs, hparams or any other `key: value` pairs
aim.set_params(hyperparam_dict, name='hparams') # Passing name argument is optional

...
for step in range(10):
    # Log metrics to visualize performance
    aim.track(metric_value, name='metric_name', epoch=epoch_number)
...

See documentation here.

PyTorch Lightning integration
from aim.pytorch_lightning import AimLogger

...
trainer = pl.Trainer(logger=AimLogger(experiment='experiment_name'))
...

See documentation here.

Keras & tf.keras integrations
import aim

# Save inputs, hparams or any other `key: value` pairs
aim.set_params(param_dict, name='params_name') # Passing name argument is optional

...
model.fit(x_train, y_train, epochs=epochs, callbacks=[
    aim.keras.AimCallback(aim.Session(experiment='experiment_name'))
    
    # Use aim.tensorflow.AimCallback in case of tf.keras
    aim.tensorflow.AimCallback(aim.Session(experiment='experiment_name'))
])
...

See documentation here.

3. Run the training like you are used to and start Aim UI

$ aim up

Docs

See the docs at Aim.

About

Aim — a super-easy way to record, search and compare 1000s of ML training runs. This repo contains the web UI component of Aim.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 73.9%
  • Less 12.5%
  • Python 9.6%
  • Shell 2.2%
  • Dockerfile 1.2%
  • CSS 0.3%
  • Other 0.3%