Skip to content

vivanov879/recursive_neural_network

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Torch implementation of Recursive Neural Network based on cs224d assignment 3.

Tree structure assigned to every sentence is assumed given. Every node in a tree has a label. We try to predict the label. In Terminal.app run th tree.lua to train the model and check perfromance on the dev set. Prints confusion matrix for train and dev sets.

Result I got with

h_dim = 30
batch_size = 30
number_of_iteration = 10000

train set:

ConfusionMatrix:
[[    1356    4922     340    1360     267]   16.446% 	[class: 1]
 [     219   21002    7292    5494     355]   61.120% 	[class: 2]
 [      23    3257  205016   11241     251]   93.279% 	[class: 3]
 [       7     612    5971   34836    2768]   78.825% 	[class: 4]
 [       3      66     101    4917    6906]]  57.584% 	[class: 5]
 + average row correct: 61.450784802437% 
 + average rowUcol correct (VOC measure): 49.672969281673% 
 + global correct: 84.473071297186%

dev set:

ConfusionMatrix:
[[     127     574     151     192      26]   11.869% 	[class: 1]
 [      17    2229    1531     765      71]   48.320% 	[class: 2]
 [       6     695   25684    1849      71]   90.740% 	[class: 3]
 [       4     161    1210    3975     431]   68.760% 	[class: 4]
 [       1      28      88     778     783]]  46.663% 	[class: 5]
 + average row correct: 53.270339220762% 
 + average rowUcol correct (VOC measure): 41.442299634218% 
 + global correct: 79.132385938669%

About

Torch implementation of Recursive Neural Network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published