-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
41 changed files
with
22,623 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "f714b90e", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"\u001b[31mERROR: Could not find a version that satisfies the requirement poptorch (from versions: none)\u001b[0m\u001b[31m\r\n", | ||
"\u001b[0m\u001b[31mERROR: No matching distribution found for poptorch\u001b[0m\u001b[31m\r\n", | ||
"\u001b[0m" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!pip install poptorch" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"id": "cfd476c8", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"ename": "ModuleNotFoundError", | ||
"evalue": "No module named 'poptorch'", | ||
"output_type": "error", | ||
"traceback": [ | ||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", | ||
"Cell \u001b[0;32mIn[8], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;241m,\u001b[39m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mnn\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnn\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpopart\u001b[39;00m\u001b[38;5;241m,\u001b[39m \u001b[38;5;21;01mpoptorch\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01msnntorch\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01msnn\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01msnntorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctional\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mSF\u001b[39;00m\n", | ||
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'poptorch'" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import torch, torch.nn as nn\n", | ||
"import popart, poptorch\n", | ||
"import snntorch as snn\n", | ||
"import snntorch.functional as SF" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1cdbfc95", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from torch.utils.data import DataLoader\n", | ||
"from torchvision import datasets, transforms\n", | ||
"\n", | ||
"batch_size = 128\n", | ||
"data_path='/data/mnist'\n", | ||
"\n", | ||
"# Define a transform\n", | ||
"transform = transforms.Compose([\n", | ||
" transforms.Resize((28, 28)),\n", | ||
" transforms.Grayscale(),\n", | ||
" transforms.ToTensor(),\n", | ||
" transforms.Normalize((0,), (1,))])\n", | ||
"\n", | ||
"mnist_train = datasets.MNIST(data_path, train=True, download=True, transform=transform)\n", | ||
"mnist_test = datasets.MNIST(data_path, train=False, download=True, transform=transform)\n", | ||
"\n", | ||
"# Train using full precision 32-flt\n", | ||
"opts = poptorch.Options()\n", | ||
"opts.Precision.halfFloatCasting(poptorch.HalfFloatCastingBehavior.HalfUpcastToFloat)\n", | ||
"\n", | ||
"# Create DataLoaders\n", | ||
"train_loader = poptorch.DataLoader(options=opts, dataset=mnist_train, batch_size=batch_size, shuffle=True, num_workers=20)\n", | ||
"test_loader = poptorch.DataLoader(options=opts, dataset=mnist_test, batch_size=batch_size, shuffle=True, num_workers=20)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ca06da51", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"num_steps = 25\n", | ||
"beta = 0.9" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2ca4a94e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class Model(torch.nn.Module):\n", | ||
"def __init__(self):\n", | ||
" super().__init__()\n", | ||
"\n", | ||
" num_inputs = 784\n", | ||
" num_hidden = 1000\n", | ||
" num_outputs = 10\n", | ||
"\n", | ||
" self.fc1 = nn.Linear(num_inputs, num_hidden)\n", | ||
" self.lif1 = snn.Leaky(beta=beta)\n", | ||
" self.fc2 = nn.Linear(num_hidden, num_output)\n", | ||
" self.lif2 = snn.Leaky(beta=beta)\n", | ||
"\n", | ||
" # Cross-Entropy Spike Count Loss\n", | ||
" self.loss_fn = SF.ce_count_loss()\n", | ||
"\n", | ||
"def forward(self, x, labels=None):\n", | ||
" mem1 = self.lif1.init_leaky()\n", | ||
" mem2 = self.lif2.init_leaky()\n", | ||
"\n", | ||
" spk2_rec = []\n", | ||
" mem2_rec = []\n", | ||
"\n", | ||
" for step in range(num_steps):\n", | ||
" cur1 = self.fc1(x.view(batch_size,-1))\n", | ||
" spk1, mem1 = self.lif1(cur1, mem1)\n", | ||
" cur2 = self.fc2(spk1)\n", | ||
" spk2, mem2 = self.lif2(cur2, mem2)\n", | ||
"\n", | ||
" spk2_rec.append(spk2)\n", | ||
" mem2_rec.append(mem2)\n", | ||
"\n", | ||
" spk2_rec = torch.stack(spk2_rec)\n", | ||
" mem2_rec = torch.stack(mem2_rec)\n", | ||
"\n", | ||
" if self.training:\n", | ||
" return spk2_rec, poptorch.identity_loss(self.loss_fn(mem2_rec, labels), \"none\")\n", | ||
" return spk2_rec" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e3a02ba6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"self.fc1 = nn.Linear(num_inputs, num_hidden)\n", | ||
"self.lif1 = snn.Leaky(beta=beta)\n", | ||
"self.fc2 = nn.Linear(num_hidden, num_output)\n", | ||
"self.lif2 = snn.Leaky(beta=beta)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ba8b3a05", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from snntorch import surrogate\n", | ||
"\n", | ||
"self.lif1 = snn.Leaky(beta=beta, spike_grad = surrogate.fast_sigmoid())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0d8c3d12", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"self.loss_fn = SF.ce_count_loss()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "71c22d0b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mem1 = self.lif1.init_leaky()\n", | ||
"mem2 = self.lif2.init_leaky()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "94b42c2e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for step in range(num_steps):\n", | ||
" cur1 = self.fc1(x.view(batch_size,-1))\n", | ||
" spk1, mem1 = self.lif1(cur1, mem1)\n", | ||
" cur2 = self.fc2(spk1)\n", | ||
" spk2, mem2 = self.lif2(cur2, mem2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "24a3d65a", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"net = Model()\n", | ||
"optimizer = poptorch.optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999))\n", | ||
"\n", | ||
"poptorch_model = poptorch.trainingModel(net, options=opts, optimizer=optimizer)\n", | ||
"\n", | ||
"epochs = 10\n", | ||
"for epoch in tqdm(range(epochs), desc=\"epochs\"):\n", | ||
" correct = 0.0\n", | ||
"\n", | ||
" for i, (data, labels) in enumerate(train_loader):\n", | ||
" output, loss = poptorch_model(data, labels)\n", | ||
"\n", | ||
" if i % 250 == 0:\n", | ||
" _, pred = output.sum(dim=0).max(1)\n", | ||
" correct = (labels == pred).sum().item()/len(labels)\n", | ||
"\n", | ||
" # Accuracy on a single batch\n", | ||
" print(\"Accuracy: \", correct)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.11" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.