-
Notifications
You must be signed in to change notification settings - Fork 123
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
705 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
#include <Kokkos_Core.hpp> | ||
#include "clad/Differentiator/Differentiator.h" | ||
#include "gtest/gtest.h" | ||
// #include "TestUtils.hpp" | ||
#include "parallel_sum.hpp" | ||
|
||
TEST(ParallelFor, HelloWorldLambdaLoopForward) { // data races | ||
// // check finite difference and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
std::function<double(double)> _f = [](double x) { | ||
double res = 0.; | ||
Kokkos::parallel_for("HelloWorld-forward", 5, [&res, x](const int i){ res = x*x; }); // this is not a KOKKOS_LAMBDA because it must capture res by reference | ||
// res = x*x; | ||
return res; | ||
}; | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_diff = clad::differentiate(_f, 0/*x*/); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double f_diff_ex = f_diff.execute(x); | ||
// double dx_f_FD = finite_difference_tangent(_f, x, eps); | ||
// EXPECT_NEAR(f_diff_ex, dx_f_FD, abs(tau*dx_f_FD)); | ||
// } | ||
} | ||
|
||
TEST(ParallelFor, HelloWorldLambdaLoopReverse) { // data races | ||
// // check finite difference and reverse mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
std::function<double(double)> _f = [](double x) { | ||
double res = 0.; | ||
Kokkos::parallel_for("HelloWorld-reverse", 5, [&res, x](const int i){ res = x*x; }); // this is not a KOKKOS_LAMBDA because it must capture res by reference | ||
// res = x*x; | ||
return res; | ||
}; | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_grad = clad::gradient(_f); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double dx_f_FD = finite_difference_tangent(_f, x, eps); | ||
// double dx; | ||
// f_grad.execute(x, &dx); | ||
// EXPECT_NEAR(dx_f_FD, dx, abs(tau*dx)); | ||
// } | ||
} | ||
|
||
double parallel_polynomial_for(double x) { // data races | ||
Kokkos::View <double[1], Kokkos::HostSpace> res("res"); | ||
res(0) = 0; | ||
Kokkos::parallel_for("polycalc", 5, KOKKOS_LAMBDA(const int i) { | ||
res(0) += pow(x, i+1)/(i+1); | ||
}); | ||
// for (int i = 0; i < 6; ++i) { | ||
// res(0) += pow(x, i+1)/(i+1); | ||
// } | ||
return res(0); | ||
} | ||
|
||
TEST(ParallelFor, ParallelPolynomialForward) { | ||
// // check true derivative and forward mode similarity | ||
// const double tau = 1e-5; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_diff = clad::differentiate(parallel_polynomial_for, "x"); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double f_diff_ex = f_diff.execute(x); | ||
// double dx_f_true = parallel_polynomial_true_derivative(x); | ||
// EXPECT_NEAR(f_diff_ex, dx_f_true, abs(tau*dx_f_true)); | ||
// } | ||
} | ||
|
||
TEST(ParallelFor, ParallelPolynomialReverse) { | ||
// // check true derivative and reverse mode similarity | ||
// const double tau = 1e-5; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_grad = clad::gradient(parallel_polynomial_for); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double dx_f_true = parallel_polynomial_true_derivative(x); | ||
// double dx = 0; | ||
// f_grad.execute(x, &dx); | ||
// EXPECT_NEAR(dx_f_true, dx, abs(tau*dx)); | ||
// } | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
#include <Kokkos_Core.hpp> | ||
#include "clad/Differentiator/Differentiator.h" | ||
#include "gtest/gtest.h" | ||
// #include "TestUtils.hpp" | ||
#include "parallel_sum.hpp" | ||
|
||
TEST(ParallelReduce, HelloWorldLambdaLoopForward) { | ||
// // check finite difference and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
std::function<double(double)> _f = [](double x) { | ||
double res = 0.; | ||
Kokkos::parallel_reduce("HelloWorld-forward", 5, KOKKOS_LAMBDA(const int& i, double& _res){ _res += x; }, res); | ||
// res = 5*x; | ||
return res; | ||
}; | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_diff = clad::differentiate(_f, 0/*x*/); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double f_diff_ex = f_diff.execute(x); | ||
// double dx_f_FD = finite_difference_tangent(_f, x, eps); | ||
// EXPECT_NEAR(f_diff_ex, dx_f_FD, abs(tau*dx_f_FD)); | ||
// } | ||
} | ||
|
||
TEST(ParallelReduce, HelloWorldLambdaLoopReverse) { | ||
// // check finite difference and reverse mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
std::function<double(double)> _f = [](double x) { | ||
double res = 0.; | ||
Kokkos::parallel_reduce("HelloWorld-reverse", 5, KOKKOS_LAMBDA(const int& i, double& _res){ _res += x; }, res); | ||
// res = 5*x; | ||
return res; | ||
}; | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_grad = clad::gradient(_f); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double dx_f_FD = finite_difference_tangent(_f, x, eps); | ||
// double dx; | ||
// f_grad.execute(x, &dx); | ||
// EXPECT_NEAR(dx_f_FD, dx, abs(tau*dx)); | ||
// } | ||
} | ||
|
||
double parallel_polynomial_reduce(double x) { | ||
Kokkos::View <double[1], Kokkos::HostSpace> res("res"); | ||
res(0) = 0; | ||
Kokkos::parallel_reduce("polycalc", 5, KOKKOS_LAMBDA(const int& i, double& _res) { | ||
_res += pow(x, i+1)/(i+1); | ||
}, res(0)); | ||
// for (int i = 0; i < 6; ++i) { | ||
// res(0) += pow(x, i+1)/(i+1); | ||
// } | ||
return res(0); | ||
} | ||
|
||
TEST(ParallelReduce, ParallelPolynomialForward) { | ||
// // check true derivative and forward mode similarity | ||
// const double tau = 1e-5; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_diff = clad::differentiate(parallel_polynomial_reduce, "x"); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double f_diff_ex = f_diff.execute(x); | ||
// double dx_f_true = parallel_polynomial_true_derivative(x); | ||
// EXPECT_NEAR(f_diff_ex, dx_f_true, abs(tau*dx_f_true)); | ||
// } | ||
} | ||
|
||
TEST(ParallelReduce, ParallelPolynomialReverse) { | ||
// // check true derivative and reverse mode similarity | ||
// const double tau = 1e-5; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_grad = clad::gradient(parallel_polynomial_reduce); | ||
// for (double x = -2; x <= 2; x += 1) { | ||
// double dx_f_true = parallel_polynomial_true_derivative(x); | ||
// double dx = 0; | ||
// f_grad.execute(x, &dx); | ||
// EXPECT_NEAR(dx_f_true, dx, abs(tau*dx)); | ||
// } | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
// Useful things | ||
|
||
#ifndef KOKKOS_UNITTEST_UTILS | ||
#define KOKKOS_UNITTEST_UTILS | ||
|
||
template <typename T> // comparison with the finite difference approx. has been tested in the initial PR for Kokkos-aware Clad by Kim Liegeois | ||
T finite_difference_tangent(std::function<T(T)> func, const T& x, const T& epsilon) { | ||
return (func(x+epsilon)-func(x-epsilon)) / (2 * epsilon); | ||
} | ||
|
||
double parallel_polynomial_true_derivative(double x) { // the true derivative of the polynomial tested in ParallelFor.cpp and ParallelReduce.cpp | ||
double res = 0; | ||
double x_c = 1; | ||
for (unsigned i = 0; i < 6; ++i) { | ||
res += x_c; | ||
x_c *= x; | ||
} | ||
return res; | ||
} | ||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
// Very basic Kokkos::View usage test that should work by all means | ||
// inspired by https://github.com/kliegeois/clad/blob/kokkos-PR/unittests/Kokkos/view_access.cpp | ||
// it has been modified to match gtest guidelines and improve readability | ||
|
||
#include <Kokkos_Core.hpp> | ||
#include "clad/Differentiator/Differentiator.h" | ||
#include "gtest/gtest.h" | ||
#include "TestUtils.hpp" | ||
#include "parallel_sum.hpp" | ||
|
||
double f(double x, double y) { | ||
const int N = 2; | ||
|
||
Kokkos::View<double*[N], Kokkos::HostSpace> a("a", N); | ||
Kokkos::View<double*[N], Kokkos::HostSpace> b("b", N); | ||
|
||
a(0,0) = x; | ||
b(0,0) = y*x; | ||
|
||
return a(0,0) + a(0,0)*b(0,0) + b(0,0); | ||
} | ||
|
||
TEST(ViewBasics, TestAccessForward) { | ||
// // check finite difference and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_x = clad::differentiate(f, "x"); | ||
// for (double y = 3; y <= 5; y += 1) { | ||
// std::function<double(double)> f_tmp = [y](double t){ return f(t, y); }; | ||
// for (double x = 3; x <= 5; x += 1) { | ||
// double f_x_ex = f_x.execute(x, y); | ||
// double dx_f_FD = finite_difference_tangent(f_tmp, x, eps); | ||
// EXPECT_NEAR(f_x_ex, dx_f_FD, abs(tau*dx_f_FD)); | ||
// } | ||
// } | ||
} | ||
|
||
TEST(ViewBasics, TestAccessReverse) { | ||
// // check reverse mode and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_grad_exe = clad::gradient(f); | ||
// for (double y = 3; y <= 5; y += 1) { | ||
// std::function<double(double)> f_tmp = [y](double t){ return f(t, y); }; | ||
// for (double x = 3; x <= 5; x += 1) { | ||
// double dx_f_FD = finite_difference_tangent(f_tmp, x, eps); | ||
// double dx, dy; | ||
// f_grad_exe.execute(x, y, &dx, &dy); | ||
// EXPECT_NEAR(dx_f_FD, dx, abs(tau*dx)); | ||
// } | ||
// } | ||
} | ||
|
||
double f_2(double x, double y) { | ||
const int N = 2; | ||
|
||
Kokkos::View<double*[4], Kokkos::LayoutLeft, Kokkos::HostSpace> a("a", N); | ||
Kokkos::View<double*[4], Kokkos::LayoutLeft, Kokkos::HostSpace> b("b", N); | ||
|
||
Kokkos::deep_copy(a, 3*x+y); | ||
b(0,0) = x; | ||
Kokkos::deep_copy(b, a); | ||
|
||
b(0,0) = b(0,0) + a(0,0) * b(0,0); | ||
|
||
return a(0,0); // derivative wrt x is constantly 3 | ||
} | ||
|
||
TEST(ViewBasics, TestDeepCopyForward) { | ||
// // check finite difference and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_x = clad::differentiate(f_2, "x"); | ||
// for (double y = 3; y <= 5; y += 1) { | ||
// std::function<double(double)> f_tmp = [y](double t){ return f_2(t, y); }; | ||
// for (double x = 3; x <= 5; x += 1) { | ||
// double f_x_ex = f_x.execute(x, y); | ||
// double dx_f_FD = finite_difference_tangent(f_tmp, x, eps); | ||
// EXPECT_NEAR(f_x_ex, dx_f_FD, abs(tau*dx_f_FD)); | ||
// } | ||
// } | ||
} | ||
|
||
TEST(ViewBasics, TestDeepCopyReverse) { | ||
// // check reverse mode and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_grad_exe = clad::gradient(f_2); | ||
// for (double y = 3; y <= 5; y += 1) { | ||
// std::function<double(double)> f_tmp = [y](double t){ return f_2(t, y); }; | ||
// for (double x = 3; x <= 5; x += 1) { | ||
// double dx_f_FD = finite_difference_tangent(f_tmp, x, eps); | ||
// double dx, dy; | ||
// f_grad_exe.execute(x, y, &dx, &dy); | ||
// EXPECT_NEAR(dx_f_FD, dx, abs(tau*dx)); | ||
// } | ||
// } | ||
} | ||
|
||
double f_3(double x, double y) { | ||
const int N = 2; | ||
|
||
Kokkos::View<double*, Kokkos::LayoutLeft, Kokkos::HostSpace> a("a", N); | ||
Kokkos::View<double*, Kokkos::LayoutLeft, Kokkos::HostSpace> b("b", N); | ||
|
||
Kokkos::deep_copy(a, 3*y+x+50); | ||
b(1) = x*y; | ||
Kokkos::deep_copy(b, a); | ||
|
||
b(1) = b(1) + a(0) * b(1); | ||
|
||
a(1) = x*x*x; | ||
a(0) += a(1); | ||
|
||
return a(0); // derivative of this wrt y is constantly 3 | ||
} | ||
|
||
TEST(ViewBasics, TestDeepCopy2Forward) { | ||
// // check finite difference and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_y = clad::differentiate(f_3, "y"); | ||
// for (double x = 3; x <= 5; x += 1) { | ||
// std::function<double(double)> f_tmp = [x](double t){ return f_3(x, t); }; | ||
// for (double y = 3; y <= 5; y += 1) { | ||
// double f_y_ex = f_y.execute(x, y); | ||
// double dy_f_FD = finite_difference_tangent(f_tmp, y, eps); | ||
// EXPECT_NEAR(f_y_ex, dy_f_FD, abs(tau*dy_f_FD)); | ||
// } | ||
// } | ||
} | ||
|
||
TEST(ViewBasics, TestDeepCopy2Reverse) { | ||
// // check reverse mode and forward mode similarity | ||
// const double eps = 1e-5; | ||
// const double tau = 1e-6; // tolerance | ||
|
||
// // TODO: uncomment this once it has been implemented | ||
// auto f_grad_exe = clad::gradient(f_3); | ||
// for (double x = 3; x <= 5; x += 1) { | ||
// std::function<double(double)> f_tmp = [x](double t){ return f_3(x, t); }; | ||
// for (double y = 3; y <= 5; y += 1) { | ||
// double dy_f_FD = finite_difference_tangent(f_tmp, y, eps); | ||
// double dx, dy; | ||
// f_grad_exe.execute(x, y, &dx, &dy); | ||
// EXPECT_NEAR(dy_f_FD, dy, abs(tau*dy)); | ||
// } | ||
// } | ||
} |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.