-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b5e0d12
commit 2f268db
Showing
13 changed files
with
3,588 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,344 @@ | ||
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | ||
* | ||
* Redistribution and use in source and binary forms, with or without | ||
* modification, are permitted provided that the following conditions | ||
* are met: | ||
* * Redistributions of source code must retain the above copyright | ||
* notice, this list of conditions and the following disclaimer. | ||
* * Redistributions in binary form must reproduce the above copyright | ||
* notice, this list of conditions and the following disclaimer in the | ||
* documentation and/or other materials provided with the distribution. | ||
* * Neither the name of NVIDIA CORPORATION nor the names of its | ||
* contributors may be used to endorse or promote products derived | ||
* from this software without specific prior written permission. | ||
* | ||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
*/ | ||
|
||
/* | ||
* This sample evaluates fair call and put prices for a | ||
* given set of European options by Black-Scholes formula. | ||
* See supplied whitepaper for more explanations. | ||
*/ | ||
|
||
#include <helper_functions.h> // helper functions for string parsing | ||
#include <helper_cuda.h> // helper functions CUDA error checking and initialization | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
// Process an array of optN options on CPU | ||
//////////////////////////////////////////////////////////////////////////////// | ||
extern "C" void BlackScholesCPU(float *h_CallResult, float *h_PutResult, | ||
float *h_StockPrice, float *h_OptionStrike, | ||
float *h_OptionYears, float Riskfree, | ||
float Volatility, int optN); | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
// Process an array of OptN options on GPU | ||
//////////////////////////////////////////////////////////////////////////////// | ||
#include "BlackScholes_kernel.cuh" | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
// Helper function, returning uniformly distributed | ||
// random float in [low, high] range | ||
//////////////////////////////////////////////////////////////////////////////// | ||
float RandFloat(float low, float high) { | ||
float t = (float)rand() / (float)RAND_MAX; | ||
return (1.0f - t) * low + t * high; | ||
} | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
// Data configuration | ||
//////////////////////////////////////////////////////////////////////////////// | ||
const int OPT_N = 4000000; | ||
const int NUM_ITERATIONS = 512; | ||
|
||
const int OPT_SZ = OPT_N * sizeof(float); | ||
const float RISKFREE = 0.02f; | ||
const float VOLATILITY = 0.30f; | ||
|
||
#define DIV_UP(a, b) (((a) + (b)-1) / (b)) | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
// Main program | ||
//////////////////////////////////////////////////////////////////////////////// | ||
|
||
/* | ||
* DISCLAIMER: The following file has been slightly modified to ensure | ||
* compatibility with Clad and to serve as a Clad demo. Specifically, parts of | ||
* the original `main` function have been moved to a separate function to use | ||
* `clad::gradient` on. Furthermore, Clad cannot clone checkCudaErrors | ||
* successfully, so these calls have been omitted. The same applies to the | ||
* cudaDeviceSynchronize function. New helper functions are included in another | ||
* file and invoked here to verify the gradient's results. Since Clad cannot | ||
* handle timers at the moment, the time measurement is included in | ||
* `main` and doesn't time exclusively the original kernel execution, but the | ||
* whole `launch` function and its gradient are timed in this version. | ||
* | ||
* The original file is available in NVIDIA's cuda-samples repository on GitHub. | ||
* | ||
* Relevant documentation regarding the problem at hand can be found in NVIDIA's | ||
* cuda-samples repository. Using Clad, we compute some of the Greeks | ||
* (sensitivities) for the Black-Scholes model and verify them against | ||
* approximations of their theoretical values as denoted in Wikipedia | ||
* (https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model). | ||
* | ||
* To build and run the demo, use the following command: make run | ||
*/ | ||
|
||
#include "clad/Differentiator/Differentiator.h" | ||
#include <helper_grad_verify.h> | ||
|
||
void launch(float* h_CallResultCPU, float* h_CallResultGPU, | ||
float* h_PutResultCPU, float* h_PutResultGPU, float* h_StockPrice, | ||
float* h_OptionStrike, float* h_OptionYears) { | ||
|
||
//'d_' prefix - GPU (device) memory space | ||
float | ||
// Results calculated by GPU | ||
*d_CallResult = nullptr, | ||
*d_PutResult = nullptr, | ||
// GPU instance of input data | ||
*d_StockPrice = nullptr, *d_OptionStrike = nullptr, | ||
*d_OptionYears = nullptr; | ||
|
||
printf("...allocating GPU memory for options.\n"); | ||
cudaMalloc((void**)&d_CallResult, OPT_SZ); | ||
cudaMalloc((void**)&d_PutResult, OPT_SZ); | ||
cudaMalloc((void**)&d_StockPrice, OPT_SZ); | ||
cudaMalloc((void**)&d_OptionStrike, OPT_SZ); | ||
cudaMalloc((void**)&d_OptionYears, OPT_SZ); | ||
|
||
// Copy options data to GPU memory for further processing | ||
printf("...copying input data to GPU mem.\n"); | ||
cudaMemcpy(d_StockPrice, h_StockPrice, OPT_SZ, cudaMemcpyHostToDevice); | ||
cudaMemcpy(d_OptionStrike, h_OptionStrike, OPT_SZ, cudaMemcpyHostToDevice); | ||
cudaMemcpy(d_OptionYears, h_OptionYears, OPT_SZ, cudaMemcpyHostToDevice); | ||
printf("Data init done.\n\n"); | ||
|
||
printf("Executing Black-Scholes GPU kernel (%i iterations)...\n", | ||
NUM_ITERATIONS); | ||
int i; | ||
for (i = 0; i < NUM_ITERATIONS; i++) { | ||
BlackScholesGPU<<<DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/>>>( | ||
(float2 *)d_CallResult, (float2 *)d_PutResult, (float2 *)d_StockPrice, | ||
(float2 *)d_OptionStrike, (float2 *)d_OptionYears, RISKFREE, VOLATILITY, | ||
OPT_N); | ||
} | ||
|
||
// Both call and put is calculated | ||
|
||
printf("\nReading back GPU results...\n"); | ||
// Read back GPU results to compare them to CPU results | ||
cudaMemcpy(h_CallResultGPU, d_CallResult, OPT_SZ, cudaMemcpyDeviceToHost); | ||
cudaMemcpy(h_PutResultGPU, d_PutResult, OPT_SZ, cudaMemcpyDeviceToHost); | ||
|
||
printf("...releasing GPU memory.\n"); | ||
cudaFree(d_OptionYears); | ||
cudaFree(d_OptionStrike); | ||
cudaFree(d_StockPrice); | ||
cudaFree(d_PutResult); | ||
cudaFree(d_CallResult); | ||
} | ||
|
||
int main(int argc, char **argv) { | ||
// Start logs | ||
printf("[%s] - Starting...\n", argv[0]); | ||
|
||
//'h_' prefix - CPU (host) memory space | ||
float | ||
// Results calculated by CPU for reference | ||
*h_CallResultCPU, | ||
*h_PutResultCPU, | ||
// CPU copy of GPU results | ||
*h_CallResultGPU, *h_PutResultGPU, | ||
// CPU instance of input data | ||
*h_StockPrice, *h_OptionStrike, *h_OptionYears; | ||
|
||
double delta, ref, sum_delta, sum_ref, max_delta, L1norm, gpuTime; | ||
|
||
StopWatchInterface *hTimer = NULL; | ||
int i; | ||
|
||
findCudaDevice(argc, (const char **)argv); | ||
|
||
sdkCreateTimer(&hTimer); | ||
|
||
printf("Initializing data...\n"); | ||
printf("...allocating CPU memory for options.\n"); | ||
h_CallResultCPU = (float *)malloc(OPT_SZ); | ||
h_PutResultCPU = (float *)malloc(OPT_SZ); | ||
h_CallResultGPU = (float *)malloc(OPT_SZ); | ||
h_PutResultGPU = (float *)malloc(OPT_SZ); | ||
h_StockPrice = (float *)malloc(OPT_SZ); | ||
h_OptionStrike = (float *)malloc(OPT_SZ); | ||
h_OptionYears = (float *)malloc(OPT_SZ); | ||
|
||
printf("...generating input data in CPU mem.\n"); | ||
srand(5347); | ||
|
||
// Generate options set | ||
for (i = 0; i < OPT_N; i++) { | ||
h_CallResultCPU[i] = 0.0f; | ||
h_PutResultCPU[i] = -1.0f; | ||
h_StockPrice[i] = RandFloat(5.0f, 30.0f); | ||
h_OptionStrike[i] = RandFloat(1.0f, 100.0f); | ||
h_OptionYears[i] = RandFloat(0.25f, 10.0f); | ||
} | ||
|
||
/*******************************************************************************/ | ||
|
||
// Compute gradients | ||
auto callGrad = clad::gradient( | ||
launch, "h_CallResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears"); | ||
auto putGrad = clad::gradient( | ||
launch, "h_PutResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears"); | ||
|
||
// Declare and initialize the derivatives | ||
float* d_CallResultGPU = (float*)malloc(OPT_SZ); | ||
float* d_PutResultGPU = (float*)malloc(OPT_SZ); | ||
float* d_StockPrice = (float*)calloc(OPT_N, sizeof(float)); | ||
float* d_OptionStrike = (float*)calloc(OPT_N, sizeof(float)); | ||
float* d_OptionYears = (float*)calloc(OPT_N, sizeof(float)); | ||
|
||
for (int i = 0; i < OPT_N; i++) { | ||
d_CallResultGPU[i] = 1.0f; | ||
d_PutResultGPU[i] = 1.0f; | ||
} | ||
|
||
/*******************************************************************************/ | ||
|
||
checkCudaErrors(cudaDeviceSynchronize()); | ||
sdkResetTimer(&hTimer); | ||
sdkStartTimer(&hTimer); | ||
// Compute the values and derivatives of the price of the call options | ||
callGrad.execute(h_CallResultCPU, h_CallResultGPU, h_PutResultCPU, | ||
h_PutResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_CallResultGPU, d_StockPrice, d_OptionStrike, | ||
d_OptionYears); | ||
|
||
checkCudaErrors(cudaDeviceSynchronize()); | ||
sdkStopTimer(&hTimer); | ||
gpuTime = sdkGetTimerValue(&hTimer) / NUM_ITERATIONS; | ||
|
||
// Both call and put is calculated | ||
printf("Options count : %i \n", 2 * OPT_N); | ||
printf("BlackScholesGPU() time : %f msec\n", gpuTime); | ||
printf("Effective memory bandwidth: %f GB/s\n", | ||
((double)(5 * OPT_N * sizeof(float)) * 1E-9) / (gpuTime * 1E-3)); | ||
printf("Gigaoptions per second : %f \n\n", | ||
((double)(2 * OPT_N) * 1E-9) / (gpuTime * 1E-3)); | ||
|
||
printf( | ||
"BlackScholes, Throughput = %.4f GOptions/s, Time = %.5f s, Size = %u " | ||
"options, NumDevsUsed = %u, Workgroup = %u\n", | ||
(((double)(2.0 * OPT_N) * 1.0E-9) / (gpuTime * 1.0E-3)), gpuTime * 1e-3, | ||
(2 * OPT_N), 1, 128); | ||
|
||
printf("Checking the results...\n"); | ||
printf("...running CPU calculations.\n\n"); | ||
// Calculate options values on CPU | ||
BlackScholesCPU(h_CallResultCPU, h_PutResultCPU, h_StockPrice, h_OptionStrike, | ||
h_OptionYears, RISKFREE, VOLATILITY, OPT_N); | ||
|
||
printf("Comparing the results...\n"); | ||
// Calculate max absolute difference and L1 distance | ||
// between CPU and GPU results | ||
sum_delta = 0; | ||
sum_ref = 0; | ||
max_delta = 0; | ||
|
||
for (i = 0; i < OPT_N; i++) { | ||
ref = h_CallResultCPU[i]; | ||
delta = fabs(h_CallResultCPU[i] - h_CallResultGPU[i]); | ||
|
||
if (delta > max_delta) { | ||
max_delta = delta; | ||
} | ||
|
||
sum_delta += delta; | ||
sum_ref += fabs(ref); | ||
} | ||
|
||
L1norm = sum_delta / sum_ref; | ||
printf("L1 norm: %E\n", L1norm); | ||
printf("Max absolute error: %E\n\n", max_delta); | ||
|
||
// Verify delta | ||
computeL1norm<Call, Delta>(h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_StockPrice); | ||
// Verify derivatives with respect to the Strike price | ||
computeL1norm<Call, dX>(h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_OptionStrike); | ||
// Verify theta | ||
computeL1norm<Call, Theta>(h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_OptionYears); | ||
/*******************************************************************************/ | ||
// Re-initialize data for next gradient call | ||
for (int i = 0; i < OPT_N; i++) | ||
{ | ||
h_CallResultCPU[i] = 0.0f; | ||
h_PutResultCPU[i] = -1.0f; | ||
d_CallResultGPU[i] = 1.0f; | ||
d_PutResultGPU[i] = 1.0f; | ||
} | ||
for (int i = 0; i < OPT_N; i++) | ||
{ | ||
d_StockPrice[i] = 0.f; | ||
d_OptionStrike[i] = 0.f; | ||
d_OptionYears[i] = 0.f; | ||
} | ||
// Compute the values and derivatives of the price of the Put options | ||
putGrad.execute(h_CallResultCPU, h_CallResultGPU, h_PutResultCPU, | ||
h_PutResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_PutResultGPU, d_StockPrice, d_OptionStrike, d_OptionYears); | ||
// Verify delta | ||
computeL1norm<Put, Delta>(h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_StockPrice); | ||
// Verify derivatives with respect to the Strike price | ||
computeL1norm<Put, dX>(h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_OptionStrike); | ||
// Verify theta | ||
computeL1norm<Put, Theta>(h_StockPrice, h_OptionStrike, h_OptionYears, | ||
d_OptionYears); | ||
/*******************************************************************************/ | ||
|
||
printf("Shutting down...\n"); | ||
printf("...releasing CPU memory.\n"); | ||
free(h_OptionYears); | ||
free(h_OptionStrike); | ||
free(h_StockPrice); | ||
free(h_PutResultGPU); | ||
free(h_CallResultGPU); | ||
free(h_PutResultCPU); | ||
free(h_CallResultCPU); | ||
free(d_OptionYears); | ||
free(d_OptionStrike); | ||
free(d_StockPrice); | ||
free(d_PutResultGPU); | ||
free(d_CallResultGPU); | ||
sdkDeleteTimer(&hTimer); | ||
printf("Shutdown done.\n"); | ||
|
||
printf("\n[BlackScholes] - Test Summary\n"); | ||
|
||
if (L1norm > 1e-6) { | ||
printf("Test failed!\n"); | ||
exit(EXIT_FAILURE); | ||
} | ||
|
||
printf( | ||
"\nNOTE: The CUDA Samples are not meant for performance measurements. " | ||
"Results may vary when GPU Boost is enabled.\n\n"); | ||
printf("Test passed\n"); | ||
exit(EXIT_SUCCESS); | ||
} |
Oops, something went wrong.