Skip to content

veebch/photon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Action Shot

YouTube Channel Views Instagram

Photon: an open-source incident light meter

Photon reproduces the some of the functionality of more expensive tools, using a few inexpensive/readily available parts. Currently it measures ambient light brightness, as well as the red, green and blue components of the light, which might allow White Balance readings in future iterations.

There is soldering involved, but don't let that put you off, it's easy.

COMING SOON: Custom sensor with Flash Mode

Background

An incident light-meter can be an essential tool in photography (especially film photography with old cameras). The sophisticated computation baked-in to modern cameras devotes a lot of effort guessing 'how much light is falling on the subject?". If you have the option of getting to the subject and taking a reading, no guessing is required and everything becomes a lot easier. A more in-depth description in the video below:

IMAGE ALT TEXT HERE

Components

Assembly

Hardware

If you're using one, solder the power shim to the pico following the Pimoroni instructions. Connect the Lipo/LiIon battery to the shim.

Then connect the rest of the components to the GPIO pins as described in the tables below. (VCC and GND are also connected to the pico for all except the switch)

Action Shot

Light Sensor

Pico GPIO BH1745
4 SDA
5 SCL

OLED

Pico GPIO OLED Pin Number
19 DIN/MOSI 25
18 CLK/SCK 24
17 CS 22
20 DC 26
21 RST 27

Rotary Encoder:

Pico GPIO Rotary Encoder
6 CLK
7 DT
8 SW

The Two Switches

Connect one end of the switch to GND, and the other to:

Pico GPIO Switches
15 Measure (Keyboard Switch)
22 ISO (6x6mm switch)

Enclosure Assembly

Once you've tested that things are working, squeeze the parts into an enclosure. If you have access to a 3D printer, there are stl files in the cases directory.

Software

Download a uf2 image from the Pimoroni github repository and install it on the Pico according to the instructions. You need to use the Pimoroni image to be able to use Pimoroni drivers for the light sensor.

Clone this repository to your computer using the commands (from a terminal):

cd ~
git clone https://github.com/veebch/photon.git
cd photon

Check the port of the pico with the port listing command:

python -m serial.tools.list_ports

Now, using the port path (in our case /dev/ttyACM0) copy the contents to the repository by installing ampy and using and the commands:

ampy -p /dev/ttyACM0 put drivers/
ampy -p /dev/ttyACM0 put gui/
ampy -p /dev/ttyACM0 put color_setup.py
ampy -p /dev/ttyACM0 put main.py

(nb. make sure you are using the right port name, as shown in the port listing command above)

Done! All the required files should now be on the Pico. When you disconnect from USB and power on using the button on the power shim the script will autorun.

Using the Light Meter

A tutorial on getting the most out of your new meter is in the docs section.

Press

German

Contributing to the code

If you look at this, find it interesting, and know you can make it better then please fork the repository and use a feature branch. Pull requests are welcome and encouraged... in a nutshell:

  1. Fork it
  2. Create your feature branch (git checkout -b feature/fooBar)
  3. Commit your changes (git commit -am 'Add some fooBar')
  4. Push to the branch (git push origin feature/fooBar)
  5. Create a new Pull Request

If that all looks a bit too programmy, and if you have some photography expertise that you think could be embedded in the code then raise an issue on GitHub or contact us.

Licence

GNU GENERAL PUBLIC LICENSE Version 3.0

Appendix

Calculation of Values

The simple calculations that lead to a reading are based on the Wikipedia entry on exposure value.

The illuminance returned by the Pimoroni BH1745 ( $L$ ) is converted to an exposure value ( $E_v$ ) for ISO 100 using

$$E_v=\log _2 {{L} \over {C}},$$

where $C$ is the light meter calibration constant.

This exposure value is then adjusted to an Exposure value for the chosen ISO ( $E_{ISO}$ ) using

$$E_{ISO}=E_v + \log_2 {{ISO}\over{100}}.$$

Then, depending on the priority on the light meter, the remaining value is calculated using

$$t = {{N^2} \over {2^{E_{ISO}}}}$$

or

$$N = \sqrt{t 2^{ E_{ISO}}}$$

where $t$ is shutter speed and $N$ is f-stop. The value is then rounded to the nearest nominal value and displayed on the screen.

About

A DIY incident light meter

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages