Skip to content

Commit

Permalink
Explicitly name return value in test case
Browse files Browse the repository at this point in the history
  • Loading branch information
user202729 authored Nov 8, 2024
1 parent b16a160 commit 01452e6
Showing 1 changed file with 12 additions and 12 deletions.
24 changes: 12 additions & 12 deletions src/sage/rings/qqbar.py
Original file line number Diff line number Diff line change
Expand Up @@ -2830,62 +2830,62 @@ def number_field_elements_from_algebraics(numbers, minimal=False,
Test ``embedded`` for quadratic and cyclotomic fields::
sage: number_field_elements_from_algebraics([QQbar((-1)^(2/3))], embedded=False, minimal=True)
sage: v = number_field_elements_from_algebraics([QQbar((-1)^(2/3))], embedded=False, minimal=True); v
(Number Field in zeta6 with defining polynomial x^2 - x + 1,
[zeta6 - 1],
Ring morphism:
From: Number Field in zeta6 with defining polynomial x^2 - x + 1
To: Algebraic Field
Defn: zeta6 |--> 0.500000000000000? + 0.866025403784439?*I)
sage: _[0].coerce_embedding()
sage: number_field_elements_from_algebraics([QQbar((-1)^(2/3))], embedded=True, minimal=True)
sage: v[0].coerce_embedding()
sage: v = number_field_elements_from_algebraics([QQbar((-1)^(2/3))], embedded=True, minimal=True); v
(Cyclotomic Field of order 6 and degree 2,
[zeta6 - 1],
Ring morphism:
From: Cyclotomic Field of order 6 and degree 2
To: Algebraic Field
Defn: zeta6 |--> 0.500000000000000? + 0.866025403784439?*I)
sage: _[0].coerce_embedding()
sage: v[0].coerce_embedding()
Generic morphism:
From: Cyclotomic Field of order 6 and degree 2
To: Complex Lazy Field
Defn: zeta6 -> 0.500000000000000? + 0.866025403784439?*I
sage: number_field_elements_from_algebraics([QQbar((-1)^(1/2))], embedded=False, minimal=True)
sage: v = number_field_elements_from_algebraics([QQbar((-1)^(1/2))], embedded=False, minimal=True); v
(Number Field in I with defining polynomial x^2 + 1,
[I],
Ring morphism:
From: Number Field in I with defining polynomial x^2 + 1
To: Algebraic Field
Defn: I |--> 1*I)
sage: _[0].coerce_embedding()
sage: number_field_elements_from_algebraics([QQbar((-1)^(1/2))], embedded=True, minimal=True)
sage: v[0].coerce_embedding()
sage: v = number_field_elements_from_algebraics([QQbar((-1)^(1/2))], embedded=True, minimal=True); v
(Number Field in I with defining polynomial x^2 + 1 with I = 1*I,
[I],
Ring morphism:
From: Number Field in I with defining polynomial x^2 + 1 with I = 1*I
To: Algebraic Field
Defn: I |--> 1*I)
sage: _[0].coerce_embedding()
sage: v[0].coerce_embedding()
Generic morphism:
From: Number Field in I with defining polynomial x^2 + 1 with I = 1*I
To: Complex Lazy Field
Defn: I -> 1*I
sage: number_field_elements_from_algebraics([QQbar((-1)^(1/5))], embedded=False, minimal=True)
sage: v = number_field_elements_from_algebraics([QQbar((-1)^(1/5))], embedded=False, minimal=True); v
(Number Field in zeta10 with defining polynomial x^4 - x^3 + x^2 - x + 1,
[zeta10],
Ring morphism:
From: Number Field in zeta10 with defining polynomial x^4 - x^3 + x^2 - x + 1
To: Algebraic Field
Defn: zeta10 |--> 0.8090169943749474? + 0.5877852522924731?*I)
sage: _[0].coerce_embedding()
sage: number_field_elements_from_algebraics([QQbar((-1)^(1/5))], embedded=True, minimal=True)
sage: v[0].coerce_embedding()
sage: v = number_field_elements_from_algebraics([QQbar((-1)^(1/5))], embedded=True, minimal=True); v
(Cyclotomic Field of order 10 and degree 4,
[zeta10],
Ring morphism:
From: Cyclotomic Field of order 10 and degree 4
To: Algebraic Field
Defn: zeta10 |--> 0.8090169943749474? + 0.5877852522924731?*I)
sage: _[0].coerce_embedding()
sage: v[0].coerce_embedding()
Generic morphism:
From: Cyclotomic Field of order 10 and degree 4
To: Complex Lazy Field
Expand Down

0 comments on commit 01452e6

Please sign in to comment.