-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
78 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
''' | ||
Code to extract all the vocabulary embeddings from a neural language model. | ||
''' | ||
|
||
from __future__ import print_function | ||
import argparse | ||
import time | ||
import math | ||
import sys | ||
import warnings | ||
import torch | ||
import torch.nn as nn | ||
import data | ||
import model | ||
|
||
try: | ||
from progress.bar import Bar | ||
PROGRESS = True | ||
except ModuleNotFoundError: | ||
PROGRESS = False | ||
|
||
# suppress SourceChangeWarnings | ||
warnings.filterwarnings("ignore") | ||
|
||
sys.stderr.write('Libraries loaded\n') | ||
|
||
# Parallelization notes: | ||
# Does not currently operate across multiple nodes | ||
# Single GPU is better for default: tied,emsize:200,nhid:200,nlayers:2,dropout:0.2 | ||
# | ||
# Multiple GPUs are better for tied,emsize:1500,nhid:1500,nlayers:2,dropout:0.65 | ||
# 4 GPUs train on wikitext-2 in 1/2 - 2/3 the time of 1 GPU | ||
|
||
parser = argparse.ArgumentParser(description='PyTorch RNN/LSTM Language Model') | ||
|
||
# Model parameters | ||
parser.add_argument('--cuda', action='store_true', | ||
help='use CUDA') | ||
|
||
# Data parameters | ||
parser.add_argument('--model_file', type=str, default='model.pt', | ||
help='path to save the final model') | ||
|
||
args = parser.parse_args() | ||
|
||
if torch.cuda.is_available(): | ||
if not args.cuda: | ||
print("WARNING: You have a CUDA device, so you should probably run with --cuda") | ||
else: | ||
torch.cuda.manual_seed(args.seed) | ||
if torch.cuda.device_count() == 1: | ||
args.single = True | ||
|
||
device = torch.device("cuda" if args.cuda else "cpu") | ||
|
||
############################################################################### | ||
# Load the model | ||
############################################################################### | ||
|
||
with open(args.model_file, 'rb') as f: | ||
if args.cuda: | ||
model = torch.load(f).to(device) | ||
else: | ||
model = torch.load(f, map_location='cpu') | ||
|
||
if args.cuda and (not args.single) and (torch.cuda.device_count() > 1): | ||
# If applicable, use multi-gpu for training | ||
# Scatters minibatches (in dim=1) across available GPUs | ||
model = nn.DataParallel(model, dim=1) | ||
if isinstance(model, torch.nn.DataParallel): | ||
# if multi-gpu, access real model for training | ||
model = model.module | ||
# after load the rnn params are not a continuous chunk of memory | ||
# this makes them a continuous chunk, and will speed up forward pass | ||
model.rnn.flatten_parameters() | ||
|
||
for word in model.encoder(torch.LongTensor([w for w in range(model.encoder.num_embeddings)])).data.numpy().tolist(): | ||
print(' '.join(str(f) for f in word)) |