-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from vanna-ai/init
Init
- Loading branch information
Showing
9 changed files
with
2,418 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
build | ||
**.egg-info | ||
venv | ||
.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
<!doctype html> | ||
<html> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta http-equiv="refresh" content="0; url=./vanna.html"/> | ||
</head> | ||
</html> |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
--- | ||
marp: true | ||
theme: gaia | ||
_class: lead | ||
paginate: true | ||
backgroundColor: #111827 | ||
color: #fff | ||
header: 'Updated: 2023-05-22' | ||
--- | ||
<style> | ||
strong { | ||
font-family: 'Roboto Slab'; | ||
color: transparent !important; | ||
background: linear-gradient(15deg, #009efd, #2af598); | ||
background-clip: text; | ||
-webkit-background-clip: text; | ||
} | ||
marp-pre { | ||
font-family: 'Fira Code Light'; | ||
font-size: 0.75em; | ||
background: #000; | ||
border-radius: 30px; | ||
} | ||
</style> | ||
|
||
![bg left:40% 80%](https://ask.vanna.ai/static/img/vanna.svg) | ||
|
||
# **Vanna.AI** | ||
## Python Package | ||
|
||
For Natural Language to SQL | ||
(and associated functionality) | ||
|
||
[email protected] | ||
|
||
--- | ||
# What can you do with **Vanna.AI**? | ||
|
||
**Vanna.AI** has a Python package that allows you to convert natural language to SQL. | ||
|
||
```python | ||
import vanna as vn | ||
|
||
vn.api_key = 'vanna-key-...' # Set your API key | ||
vn.set_org('') # Set your organization name | ||
|
||
my_question = 'What are the top 10 ABC by XYZ?' | ||
|
||
sql = vn.generate_sql(question=my_question, error_msg=None) | ||
# SELECT * FROM table_name WHERE column_name = 'value' | ||
|
||
(my_df, error_msg) = vn.run_sql(cs: snowflake.Cursor, sql=sql) | ||
|
||
vn.generate_plotly_code(question=my_question, df=my_df) | ||
# fig = px.bar(df, x='column_name', y='column_name') | ||
|
||
vn.run_plotly_code(plotly_code=fig, df=my_df) | ||
|
||
``` | ||
|
||
--- | ||
|
||
# Installation | ||
|
||
## Global Installation | ||
```bash | ||
pip install vanna | ||
``` | ||
or | ||
```bash | ||
pip3 install vanna | ||
``` | ||
|
||
## Use a Virtual Environment | ||
```bash | ||
python3 -m venv venv | ||
source venv/bin/activate | ||
pip install vanna | ||
``` | ||
|
||
--- |
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
[project] | ||
name = "vanna" | ||
version = "0.0.1" | ||
version = "0.0.2" | ||
authors = [ | ||
{ name="Zain Hoda", email="[email protected]" }, | ||
] | ||
|
@@ -12,6 +12,9 @@ classifiers = [ | |
"License :: OSI Approved :: MIT License", | ||
"Operating System :: OS Independent", | ||
] | ||
dependencies = [ | ||
"requests", "tabulate", "plotly" | ||
] | ||
|
||
[project.urls] | ||
"Homepage" = "https://github.com/vanna-ai/vanna-py" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,281 @@ | ||
print("Vanna.AI Imported") | ||
r''' | ||
A module to interact with the Vanna.AI API, providing the functionality to generate SQL explanations. | ||
```python | ||
import vanna as vn | ||
vn.api_key = 'vanna-key-...' # Set your API key | ||
vn.set_org('') # Set your organization name | ||
vn.store_sql(question="Who are the top 10 customers by Sales?", sql="SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10") | ||
my_question = 'What are the top 10 ABC by XYZ?' | ||
sql = vn.generate_sql(question=my_question, error_msg=None) | ||
# SELECT * FROM table_name WHERE column_name = 'value' | ||
conn = snowflake.connector.connect( | ||
user='my_user', | ||
password='my_password', | ||
account='my_account', | ||
database='my_database', | ||
) | ||
cs = conn.cursor() | ||
df = vn.get_results(cs, my_default_db, sql) | ||
plotly_code = vn.generate_plotly_code(question="Who are the top 10 customers by Sales?", sql=sql, df=df) | ||
# px.bar(df, x='column_name', y='column_name') | ||
fig = vn.get_plotly_figure(plotly_code=plotly_code, df=df) | ||
``` | ||
''' | ||
print("Vanna.AI Imported") | ||
|
||
import requests | ||
import pandas as pd | ||
import json | ||
import dataclasses | ||
import plotly | ||
import plotly.express as px | ||
import plotly.graph_objects as go | ||
from .types import SQLAnswer, Explanation, QuestionSQLPair, Question, QuestionId, DataResult, PlotlyResult, Status | ||
from typing import List, Dict, Any, Union, Optional | ||
|
||
api_key: Union[str, None] = None # API key for Vanna.AI | ||
__org: Union[str, None] = None # Organization name for Vanna.AI | ||
_endpoint = "https://ask.vanna.ai/rpc" | ||
|
||
def __rpc_call(method, params): | ||
""" | ||
Make a RPC call to the Vanna.AI API. | ||
Args: | ||
method (str): The name of the method to call. | ||
params (list): A list of parameters for the method. | ||
Returns: | ||
dict: The JSON response from the API converted into a dictionary. | ||
""" | ||
global api_key | ||
global __org | ||
|
||
if api_key is None: | ||
raise Exception("API key not set") | ||
|
||
if __org is None: | ||
raise Exception("Organization name not set") | ||
|
||
headers = { | ||
'Content-Type': 'application/json', | ||
'Vanna-Key': api_key, | ||
'Vanna-Org': __org | ||
} | ||
data = { | ||
"method": method, | ||
"params": [__dataclass_to_dict(obj) for obj in params] | ||
} | ||
|
||
response = requests.post(_endpoint, headers=headers, data=json.dumps(data)) | ||
return response.json() | ||
|
||
def __dataclass_to_dict(obj): | ||
""" | ||
Converts a dataclass object to a dictionary. | ||
Args: | ||
obj (object): The dataclass object to convert. | ||
Returns: | ||
dict: The dataclass object as a dictionary. | ||
""" | ||
return dataclasses.asdict(obj) | ||
|
||
def set_org(org: str) -> None: | ||
""" | ||
Set the organization name for the Vanna.AI API. | ||
Args: | ||
org (str): The organization name. | ||
""" | ||
global __org | ||
__org = org | ||
|
||
def store_sql(question: str, sql: str) -> bool: | ||
""" | ||
Store a question and its corresponding SQL query in the Vanna.AI database. | ||
Args: | ||
question (str): The question to store. | ||
sql (str): The SQL query to store. | ||
""" | ||
params = [QuestionSQLPair( | ||
question=question, | ||
sql=sql, | ||
)] | ||
|
||
d = __rpc_call(method="store_sql", params=params) | ||
|
||
if 'result' not in d: | ||
return False | ||
|
||
status = Status(**d['result']) | ||
|
||
return status.success | ||
|
||
def remove_sql(question: str) -> bool: | ||
""" | ||
Remove a question and its corresponding SQL query from the Vanna.AI database. | ||
Args: | ||
question (str): The question to remove. | ||
""" | ||
params = [Question(question=question)] | ||
|
||
d = __rpc_call(method="remove_sql", params=params) | ||
|
||
if 'result' not in d: | ||
return False | ||
|
||
status = Status(**d['result']) | ||
|
||
return status.success | ||
|
||
def generate_sql(question: str) -> str | None: | ||
""" | ||
Generate an SQL query using the Vanna.AI API. | ||
Args: | ||
question (str): The question to generate an SQL query for. | ||
Returns: | ||
str or None: The SQL query, or None if an error occurred. | ||
""" | ||
params = [Question(question=question)] | ||
|
||
d = __rpc_call(method="generate_sql_from_question", params=params) | ||
|
||
if 'result' not in d: | ||
return None | ||
|
||
# Load the result into a dataclass | ||
sql_answer = SQLAnswer(**d['result']) | ||
|
||
return sql_answer.sql | ||
|
||
def generate_plotly_code(question: str | None, sql: str | None, df: pd.DataFrame) -> str | None: | ||
""" | ||
Generate Plotly code using the Vanna.AI API. | ||
Args: | ||
question (str): The question to generate Plotly code for. | ||
sql (str): The SQL query to generate Plotly code for. | ||
df (pd.DataFrame): The dataframe to generate Plotly code for. | ||
Returns: | ||
str or None: The Plotly code, or None if an error occurred. | ||
""" | ||
params = [DataResult( | ||
question=question, | ||
sql=sql, | ||
table_markdown=df.head().to_markdown(), | ||
error=None, | ||
correction_attempts=0, | ||
)] | ||
|
||
d = __rpc_call(method="generate_plotly_code", params=params) | ||
|
||
if 'result' not in d: | ||
return None | ||
|
||
# Load the result into a dataclass | ||
plotly_code = PlotlyResult(**d['result']) | ||
|
||
return plotly_code.plotly_code | ||
|
||
def get_plotly_figure(plotly_code: str, df: pd.DataFrame, dark_mode: bool = True) -> plotly.graph_objs.Figure | None: | ||
""" | ||
Get a Plotly figure from a dataframe and Plotly code. | ||
Args: | ||
df (pd.DataFrame): The dataframe to use. | ||
plotly_code (str): The Plotly code to use. | ||
Returns: | ||
plotly.graph_objs.Figure: The Plotly figure. | ||
""" | ||
ldict = {'df': df, 'px': px, 'go': go} | ||
exec(plotly_code, globals(), ldict) | ||
|
||
fig = ldict.get('fig', None) | ||
|
||
if fig is None: | ||
return None | ||
|
||
if dark_mode: | ||
fig.update_layout(template="plotly_dark") | ||
|
||
return fig | ||
|
||
def get_results(cs, default_database: str, sql: str) -> pd.DataFrame: | ||
""" | ||
Get the results of an SQL query using the Vanna.AI API. | ||
:param cs: The Snowflake cursor to use. | ||
:type cs: snowflake.connector.cursor.SnowflakeCursor | ||
:param default_database: The default database to use (executed as "USE DATABASE {default_database};") | ||
:type default_database: str | ||
:param sql: The SQL query to run. | ||
:type sql: str | ||
:return: The results of the SQL query. | ||
:rtype: pd.DataFrame | ||
""" | ||
cs.execute(f"USE DATABASE {default_database}") | ||
|
||
cur = cs.execute(sql) | ||
|
||
results = cur.fetchall() | ||
|
||
# Create a pandas dataframe from the results | ||
df = pd.DataFrame(results, columns=[desc[0] for desc in cur.description]) | ||
|
||
return df | ||
|
||
|
||
def generate_explanation(sql: str) -> str | None: | ||
""" | ||
## Example | ||
```python | ||
vn.generate_explanation(sql="SELECT * FROM students WHERE name = 'John Doe'") | ||
# 'AI Response' | ||
``` | ||
Generate an explanation of an SQL query using the Vanna.AI API. | ||
:param sql: The SQL query to explain. | ||
:type sql: str | ||
:return: The explanation of the SQL query, or None if an error occurred. | ||
:rtype: str or None | ||
""" | ||
params = [SQLAnswer( | ||
raw_answer="", | ||
prefix="", | ||
postfix="", | ||
sql=sql, | ||
)] | ||
|
||
d = __rpc_call(method="generate_explanation", params=params) | ||
|
||
if 'result' not in d: | ||
return None | ||
|
||
# Load the result into a dataclass | ||
explanation = Explanation(**d['result']) | ||
|
||
return explanation.explanation |
Oops, something went wrong.