Skip to content

vahidsamimi/EvonikServer-2.03

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Classification

In this example, I will classify mushrooms as being edible or poisonous depending on different features. keras will be used.

The data set contains 8124 rows and the following features:

class: edible(e) or poisonous(p)

cap-shape: bell(b), conical(c), convex(x), flat(f), knobbed(k), sunken(s)

cap-surface: fibrous(f), grooves(g), scaly(y), smooth(s)

cap-color: brown(n), buff(b), cinnamon(c), gray(g), green(r), pink(p), purple(u), red(e), white(w), yellow(y)

bruises: bruises(t), no bruises(f)

odor: almond(a), anise(l), creosote(c), fishy(y), foul(f), musty(m), none(n), pungent(p), spicy(s)

gill-attachment: attached(a), descending(d), free(f), notched(n)

gill-spacing: close(c), crowded(w), distant(d)

gill-size: broad(b), narrow(n)

gill-color: black(k), brown(n), buff(b), chocolate(h), gray(g), green(r), orange(o), pink(p), purple(u), red(e), white(w), yellow(y)

stalk-shape: enlarging(e), tapering(t)

stalk-root: bulbous(b), club(c), cup(u), equal(e), rhizomorphs(z), rooted(r), missing(?)

stalk-surface-above-ring: fibrous(f), scaly(y), silky(k), smooth(s)

stalk-surface-below-ring: fibrous(f), scaly(y), silky(k), smooth(s)

stalk-color-above-ring: brown(n), buff(b), cinnamon(c), gray(g), orange(o), pink(p), red(e), white(w), yellow(y)

stalk-color-below-ring: brown(n), buff(b), cinnamon(c), gray(g), orange(o), pink(p), red(e), white(w), yellow(y)

veil-type: partial(p), universal(u)

veil-color: brown(n), orange(o), white(w), yellow(y)

ring-number: none(n), one(o), two(t)

ring-type: cobwebby(c), evanescent(e), flaring(f), large(l), none(n), pendant(p), sheathing(s), zone(z)

spore-print-color: black(k), brown(n), buff(b), chocolate(h), green(r), orange(o), purple(u), white(w), yellow(y)

population: abundant(a), clustered(c), numerous(n), scattered(s), several(v), solitary(y)

habitat: grasses(g), leaves(l), meadows(m), paths(p), urban(u), waste(w), woods(d)

Development server

The server.py has been implemented in how to encode data and training data with ML methods. You can use the Anaconda application to run the Python files on Windows. To run the server.py in the Anaconda environment, you first need to install the following packages by executing the following commands in Anaconda’s terminal. [Keras, Tensorflow, Flask]

pip install tensorflow pip install flask pip install keras

After installing the above packages, you can run the file server by running the following command. Python server.py

About

Evonik challenge server

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages