Skip to content

ursg/stable-diffusion.cpp

 
 

Repository files navigation

stable-diffusion.cpp

Inference of Stable Diffusion in pure C/C++

Features

  • Plain C/C++ implementation based on ggml, working in the same way as llama.cpp
  • 16-bit, 32-bit float support
  • 4-bit, 5-bit and 8-bit integer quantization support
  • Accelerated memory-efficient CPU inference
    • Only requires ~2.3GB when using txt2img with fp16 precision to generate a 512x512 image
  • AVX, AVX2 and AVX512 support for x86 architectures
  • SD1.x and SD2.x support
  • Original txt2img and img2img mode
  • Negative prompt
  • stable-diffusion-webui style tokenizer (not all the features, only token weighting for now)
  • Sampling method
    • Euler A
  • Cross-platform reproducibility (--rng cuda, consistent with the stable-diffusion-webui GPU RNG)
  • Supported platforms
    • Linux
    • Mac OS
    • Windows
    • Android (via Termux)

TODO

  • More sampling methods
  • GPU support
  • Make inference faster
    • The current implementation of ggml_conv_2d is slow and has high memory usage
  • Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d)
  • LoRA support
  • k-quants support

Usage

Get the Code

git clone --recursive https://github.com/leejet/stable-diffusion.cpp
cd stable-diffusion.cpp
  • If you have already cloned the repository, you can use the following command to update the repository to the latest code.
cd stable-diffusion.cpp
git pull origin master
git submodule init
git submodule update

Convert weights

Quantization

You can specify the output model format using the --out_type parameter

  • f16 for 16-bit floating-point
  • f32 for 32-bit floating-point
  • q8_0 for 8-bit integer quantization
  • q5_0 or q5_1 for 5-bit integer quantization
  • q4_0 or q4_1 for 4-bit integer quantization

Build

Build from scratch

mkdir build
cd build
cmake ..
cmake --build . --config Release
Using OpenBLAS
cmake .. -DGGML_OPENBLAS=ON
cmake --build . --config Release

Run

usage: ./bin/sd [arguments]

arguments:
  -h, --help                         show this help message and exit
  -M, --mode [txt2img or img2img]    generation mode (default: txt2img)
  -t, --threads N                    number of threads to use during computation (default: -1).
                                     If threads <= 0, then threads will be set to the number of CPU physical cores
  -m, --model [MODEL]                path to model
  -i, --init-img [IMAGE]             path to the input image, required by img2img
  -o, --output OUTPUT                path to write result image to (default: .\output.png)
  -p, --prompt [PROMPT]              the prompt to render
  -n, --negative-prompt PROMPT       the negative prompt (default: "")
  --cfg-scale SCALE                  unconditional guidance scale: (default: 7.0)
  --strength STRENGTH                strength for noising/unnoising (default: 0.75)
                                     1.0 corresponds to full destruction of information in init image
  -H, --height H                     image height, in pixel space (default: 512)
  -W, --width W                      image width, in pixel space (default: 512)
  --sample-method SAMPLE_METHOD      sample method (default: "eular a")
  --steps  STEPS                     number of sample steps (default: 20)
  -s SEED, --seed SEED               RNG seed (default: 42, use random seed for < 0)
  -v, --verbose                      print extra info

txt2img example

./bin/sd -m ../models/sd-v1-4-ggml-model-f16.bin -p "a lovely cat"

Using formats of different precisions will yield results of varying quality.

f32 f16 q8_0 q5_0 q5_1 q4_0 q4_1

img2img example

  • ./output.png is the image generated from the above txt2img pipeline
./bin/sd --mode img2img -m ../models/sd-v1-4-ggml-model-f16.bin -p "cat with blue eyes" -i ./output.png -o ./img2img_output.png --strength 0.4

Docker

Building using Docker

docker build -t sd .

Run

docker run -v /path/to/models:/models -v /path/to/output/:/output sd [args...]
# For example
# docker run -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4-ggml-model-f16.bin -p "a lovely cat" -v -o /output/output.png

Memory/Disk Requirements

precision f32 f16 q8_0 q5_0 q5_1 q4_0 q4_1
Disk 2.7G 2.0G 1.7G 1.6G 1.6G 1.5G 1.5G
Memory(txt2img - 512 x 512) ~2.8G ~2.3G ~2.1G ~2.0G ~2.0G ~2.0G ~2.0G

References

About

Stable Diffusion in pure C/C++

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 91.5%
  • Python 7.7%
  • Other 0.8%