-
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
1,072 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c4b2a910-40ce-48f9-91b6-11d5eec547f4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sys\n", | ||
"sys.path.append('/workspace/unsloth')\n", | ||
"from unsloth.models.mixtral import FastMixtralModel\n", | ||
"from unsloth import FastLanguageModel\n", | ||
"import torch\n", | ||
"max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n", | ||
"dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n", | ||
"load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n", | ||
"\n", | ||
"model, tokenizer = FastMixtralModel.from_pretrained(\n", | ||
" model_name = \"mistralai/Mixtral-8x7B-v0.1\", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B\n", | ||
" max_seq_length = max_seq_length,\n", | ||
" dtype = dtype,\n", | ||
" load_in_4bit = load_in_4bit,\n", | ||
" # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "77182aa0-762f-4e80-bdf8-8af785fc6f97", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model = FastMixtralModel.get_peft_model(\n", | ||
" model,\n", | ||
" r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n", | ||
" target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\"],\n", | ||
" # \"gate\", \"w1\", \"w2\", \"w3\"],\n", | ||
" lora_alpha = 16,\n", | ||
" lora_dropout = 0, # Supports any, but = 0 is optimized\n", | ||
" bias = \"none\", # Supports any, but = \"none\" is optimized\n", | ||
" use_gradient_checkpointing = True,\n", | ||
" random_state = 3407,\n", | ||
" use_rslora = False, # We support rank stabilized LoRA\n", | ||
" loftq_config = None, # And LoftQ\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4847ef2c-cdf5-4905-899d-9fc331fde245", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", | ||
"\n", | ||
"### Instruction:\n", | ||
"{}\n", | ||
"\n", | ||
"### Input:\n", | ||
"{}\n", | ||
"\n", | ||
"### Response:\n", | ||
"{}\"\"\"\n", | ||
"\n", | ||
"EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN\n", | ||
"def formatting_prompts_func(examples):\n", | ||
" instructions = examples[\"instruction\"]\n", | ||
" inputs = examples[\"input\"]\n", | ||
" outputs = examples[\"output\"]\n", | ||
" texts = []\n", | ||
" for instruction, input, output in zip(instructions, inputs, outputs):\n", | ||
" # Must add EOS_TOKEN, otherwise your generation will go on forever!\n", | ||
" text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN\n", | ||
" texts.append(text)\n", | ||
" return { \"text\" : texts, }\n", | ||
"pass\n", | ||
"\n", | ||
"from datasets import load_dataset\n", | ||
"dataset = load_dataset(\"yahma/alpaca-cleaned\", split = \"train\")\n", | ||
"dataset = dataset.map(formatting_prompts_func, batched = True,)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "508de7d8-64be-407d-8899-f8c737ed3650", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from trl import SFTTrainer\n", | ||
"from transformers import TrainingArguments\n", | ||
"\n", | ||
"trainer = SFTTrainer(\n", | ||
" model = model,\n", | ||
" tokenizer = tokenizer,\n", | ||
" train_dataset = dataset,\n", | ||
" dataset_text_field = \"text\",\n", | ||
" max_seq_length = max_seq_length,\n", | ||
" dataset_num_proc = 2,\n", | ||
" packing = False, # Can make training 5x faster for short sequences.\n", | ||
" args = TrainingArguments(\n", | ||
" per_device_train_batch_size = 2,\n", | ||
" gradient_accumulation_steps = 4,\n", | ||
" warmup_steps = 5,\n", | ||
" max_steps = 60,\n", | ||
" learning_rate = 2e-4,\n", | ||
" fp16 = not torch.cuda.is_bf16_supported(),\n", | ||
" bf16 = torch.cuda.is_bf16_supported(),\n", | ||
" logging_steps = 1,\n", | ||
" optim = \"adamw_8bit\",\n", | ||
" weight_decay = 0.01,\n", | ||
" lr_scheduler_type = \"linear\",\n", | ||
" seed = 3407,\n", | ||
" output_dir = \"outputs\",\n", | ||
" ),\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2e33a6e5-a8b9-402c-8419-10c3e969a561", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#@title Show current memory stats\n", | ||
"gpu_stats = torch.cuda.get_device_properties(0)\n", | ||
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", | ||
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n", | ||
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n", | ||
"print(f\"{start_gpu_memory} GB of memory reserved.\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9406a6c0-ce05-4c1b-bbb1-60ed2b3a7418", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"trainer_stats = trainer.train()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "47f6cd90-4b6a-4165-a934-ee8d630d1f9d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#@title Show final memory and time stats\n", | ||
"used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", | ||
"used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n", | ||
"used_percentage = round(used_memory /max_memory*100, 3)\n", | ||
"lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n", | ||
"print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n", | ||
"print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n", | ||
"print(f\"Peak reserved memory = {used_memory} GB.\")\n", | ||
"print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n", | ||
"print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n", | ||
"print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0e13e692-e4f7-46d1-9df0-870695fd7e9e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# alpaca_prompt = Copied from above\n", | ||
"FastMixtralModel.for_inference(model) # Enable native 2x faster inference\n", | ||
"inputs = tokenizer(\n", | ||
"[\n", | ||
" alpaca_prompt.format(\n", | ||
" \"Continue the fibonnaci sequence.\", # instruction\n", | ||
" \"1, 1, 2, 3, 5, 8\", # input\n", | ||
" \"\", # output - leave this blank for generation!\n", | ||
" )\n", | ||
"], return_tensors = \"pt\").to(\"cuda\")\n", | ||
"\n", | ||
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n", | ||
"tokenizer.batch_decode(outputs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "09978b57-d549-4888-aaba-459abb683545", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.