❗ Code here has moved into
clinlp
❗ You can now use it by installingclinlp
with dependencies:pip install clinlp[metrics]
Dataset
andMetrics
respectively have been renamed and moved:from clinlp.metrics import InfoExtractionDataset from clinlp.metrics import InfoExtractionMetrics
No other changes have been made in the current version (as of yet unreleased), but changes will most likely occur in the future. Please refer to
clinlp
for further information.
This package is intended to make evaluation of clinical nlp algorithms easier, by creating standard methods for evaluating entity matching. It's still in early phases of development.
To install the clin-nlp-metrics package use:
pip install -e .
A small example to create Dataset
objects, which can be used for computing stats and metrics:
from clin_nlp_metrics import Dataset
import json
# medcattrainer
import json
with open('medcattrainer_export.json', 'rb') as f:
mtrainer_data = json.load(f)
d1 = Dataset.from_medcattrainer(mctrainer_data)
# clinlp
import clinlp
import spacy
from model import get_model # not included
nlp = get_model()
nlp_docs = nlp.pipe([doc['text'] for doc in data['projects'][0]['documents']])
d2 = Dataset.from_clinlp_docs(nlp_docs)
Get descriptive statistics for a Dataset
as follows:
d1.stats()
Resulting in:
{'num_docs': 50,
'num_annotations': 513,
'span_counts': {'prematuriteit': 43,
'infectie': 31,
'fototherapie': 25,
'dysmaturiteit': 24,
'IRDS': 20,
'prematuur': 15,
'sepsis': 15,
'hyperbilirubinemie': 14,
'Prematuriteit': 14,
'ROP': 13,
'necrotiserende enterocolitis': 12,
'Prematuur': 11,
'infektie': 11,
'ductus': 11,
'bloeding': 8,
'dysmatuur': 7,
'IUGR': 7,
'Hyperbilirubinemie': 7,
'transfusie': 6,
'hyperbilirubinaemie': 6,
'Dopamine': 6,
'wisseltransfusie': 5,
'premature partus': 5,
'retinopathy of prematurity': 5,
'bloedtransfusie': 5},
'label_counts': {'C0151526_prematuriteit': 94,
'C0020433_hyperbilirubinemie': 68,
'C0243026_sepsis': 63,
'C0015934_intrauterine_groeivertraging': 57,
'C0002871_anemie': 37,
'C0035220_infant_respiratory_distress_syndrome': 25,
'C0035344_retinopathie_van_de_prematuriteit': 21,
'C0520459_necrotiserende_enterocolitis': 18,
'C0013274_patent_ductus_arteriosus': 18,
'C0020649_hypotensie': 18,
'C0559477_perinatale_asfyxie': 18,
'C0270191_intraventriculaire_bloeding': 17,
'C0877064_post_hemorrhagische_ventrikeldilatatie': 13,
'C0014850_oesophagus_atresie': 12,
'C0006287_bronchopulmonale_dysplasie': 9,
'C0031190_persisterende_pulmonale_hypertensie': 7,
'C0015938_macrosomie': 6,
'C0751954_veneus_infarct': 5,
'C0025289_meningitis': 5,
'C0023529_periventriculaire_leucomalacie': 2},
'qualifier_counts': {'Negation': {'Affirmed': 450, 'Negated': 50},
'Plausibility': {'Plausible': 452, 'Hypothetical': 48},
'Temporality': {'Current': 482, 'Historical': 18},
'Experiencer': {'Patient': 489, 'Other': 11}}}
Create a Metrics
object as follows:
from clin_nlp_metrics import Metrics
nlp_metrics = Metrics(d1, d2)
nlp_metrics.entity_metrics()
Will result in:
{'ent_type': {'correct': 480,
'incorrect': 1,
'partial': 0,
'missed': 32,
'spurious': 21,
'possible': 513,
'actual': 502,
'precision': 0.9561752988047809,
'recall': 0.935672514619883,
'f1': 0.9458128078817734},
'partial': {'correct': 473,
'incorrect': 0,
'partial': 8,
'missed': 32,
'spurious': 21,
'possible': 513,
'actual': 502,
'precision': 0.950199203187251,
'recall': 0.9298245614035088,
'f1': 0.9399014778325123},
'strict': {'correct': 473,
'incorrect': 8,
'partial': 0,
'missed': 32,
'spurious': 21,
'possible': 513,
'actual': 502,
'precision': 0.9422310756972112,
'recall': 0.9220272904483431,
'f1': 0.9320197044334976},
'exact': {'correct': 473,
'incorrect': 8,
'partial': 0,
'missed': 32,
'spurious': 21,
'possible': 513,
'actual': 502,
'precision': 0.9422310756972112,
'recall': 0.9220272904483431,
'f1': 0.9320197044334976}}
For explanation on the different metrics (partial
, exact
, strict
and ent_type
), see Nervaluate documentation.
Then, for metrics on qualifiers, use:
nlp_metrics.qualifier_info()
Resulting in:
{'Experiencer': {'metrics': {'n': 460,
'precision': 0.3333333333333333,
'recall': 0.09090909090909091,
'f1': 0.14285714285714288},
'misses': [{'doc.identifier': 'doc_0001',
'annotation': {'text': 'anemie',
'start': 1849,
'end': 1855,
'label': 'C0002871_anemie'},
'true_qualifier': 'Other',
'pred_qualifier': 'Patient'}, ...]},
'Temporality': {'metrics': {'n': 460,
'precision': 0.0,
'recall': 0.0,
'f1': 0.0},
'misses': [{'doc.identifier': 'doc_0001',
'annotation': {'text': 'premature partus',
'start': 1611,
'end': 1627,
'label': 'C0151526_prematuriteit'},
'true_qualifier': 'Current',
'pred_qualifier': 'Historical'}, ...]},
'Plausibility': {'metrics': {'n': 460,
'precision': 0.6486486486486487,
'recall': 0.5217391304347826,
'f1': 0.5783132530120482},
'misses': [{'doc.identifier': 'doc_0001',
'annotation': {'text': 'Groeivertraging',
'start': 1668,
'end': 1683,
'label': 'C0015934_intrauterine_groeivertraging'},
'true_qualifier': 'Plausible',
'pred_qualifier': 'Hypothetical'}, ...]},
'Negation': {'metrics': {'n': 460,
'precision': 0.7692307692307693,
'recall': 0.6122448979591837,
'f1': 0.6818181818181818},
'misses': [{'doc.identifier': 'doc_0001',
'annotation': {'text': 'wisseltransfusie',
'start': 4095,
'end': 4111,
'label': 'C0020433_hyperbilirubinemie'},
'true_qualifier': 'Affirmed',
'pred_qualifier': 'Negated'}, ...]}}
For some more advanced settings, please refer to the docs/docstrings.
Generate the Sphinx documentation as follows:
sphinx-build -b html docs docs/_build
- Richard Bartels ([email protected])
- Vincent Menger ([email protected])
- Ruben Peters ([email protected])