Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement Hilbert Transform Trendline, closes issue #411 #759

Merged
merged 4 commits into from
Mar 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions pandas_ta/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -1512,6 +1512,11 @@ def dpo(self, length=None, centered=True, offset=None, **kwargs: DictLike):
result = dpo(close=close, length=length, centered=centered, offset=offset, **kwargs)
return self._post_process(result, **kwargs)

def ht_trendline(self, offset=None, **kwargs: DictLike):
close = self._get_column(kwargs.pop("close", "close"))
result = ht_trendline(close=close, offset=offset)
return self._post_process(result, **kwargs)

def increasing(self, length=None, strict=None, asint=None, offset=None, **kwargs: DictLike):
close = self._get_column(kwargs.pop("close", "close"))
result = increasing(close=close, length=length, strict=strict, asint=asint, offset=offset, **kwargs)
Expand Down
2 changes: 1 addition & 1 deletion pandas_ta/maps.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@
# Trend
"trend": [
"adx", "alphatrend", "amat", "aroon", "chop", "cksp", "decay",
"decreasing", "dpo", "increasing", "long_run", "psar", "qstick",
"decreasing", "dpo", "ht_trendline", "increasing", "long_run", "psar", "qstick",
"rwi", "short_run", "trendflex", "tsignals", "ttm_trend", "vhf",
"vortex", "xsignals"
],
Expand Down
2 changes: 2 additions & 0 deletions pandas_ta/trend/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from .decay import decay
from .decreasing import decreasing
from .dpo import dpo
from .ht_trendline import ht_trendline
from .increasing import increasing
from .long_run import long_run
from .psar import psar
Expand All @@ -31,6 +32,7 @@
"decay",
"decreasing",
"dpo",
"ht_trendline",
"increasing",
"long_run",
"psar",
Expand Down
148 changes: 148 additions & 0 deletions pandas_ta/trend/ht_trendline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
# -*- coding: utf-8 -*-
from numpy import nan, zeros_like, arctan, zeros
from numba import njit
from pandas import DataFrame, Series
from pandas_ta._typing import DictLike, Int, IntFloat
from pandas_ta.maps import Imports
from pandas_ta.utils import v_offset, v_series, v_talib


@njit
def np_ht_trendline(x):
# Variables used for the Hilbert Transformation
a, b = 0.0962, 0.5769
rad_to_deg = 45 / arctan(1)
period, smooth_period = 0.0, 0.0

m = x.size
smooth_price = zeros(m)
de_trender = zeros(m)
q1 = zeros(m)
i1 = zeros(m)
i2 = zeros(m)
q2 = zeros(m)
_re = zeros(m)
_im = zeros(m)
i_trend = zeros(m)
trend_line = zeros(m)

for i in range(x.size):
if i < 50:
smooth_price[i] = 0
else:
smooth_price[i] = (4 * x[i] + 3 * x[i - 1] + 2 * x[i - 2] + x[i - 3]) / 10

adjusted_prev_period = 0.075 * period + 0.54

de_trender[i] = (a * smooth_price[i] + b * smooth_price[i - 2] -
b * smooth_price[i - 4] - a * smooth_price[i - 6]) * adjusted_prev_period

q1[i] = (a * de_trender[i] + b * de_trender[i - 2] -
b * de_trender[i - 4] - a * de_trender[i - 6]) * adjusted_prev_period
i1[i] = de_trender[i - 3]
ji = (a * i1[i] + b * i1[i - 2] - b * i1[i - 4] - a * i1[i - 6]) * adjusted_prev_period
jq = (a * q1[i] + b * q1[i - 2] - b * q1[i - 4] - a * q1[i - 6]) * adjusted_prev_period

i2[i] = i1[i] - jq
q2[i] = q1[i] + ji

i2[i] = 0.2 * i2[i] + 0.8 * i2[i - 1]
q2[i] = 0.2 * q2[i] + 0.8 * q2[i - 1]

_re[i] = i2[i] * i2[i - 1] + q2[i] * q2[i - 1]
_im[i] = i2[i] * q2[i - 1] - q2[i] * i2[i - 1]

_re[i] = 0.2 * _re[i] + 0.8 * _re[i - 1]
_im[i] = 0.2 * _im[i] + 0.8 * _im[i - 1]

new_period = 0
if _re[i] != 0 and _im[i] != 0:
new_period = 360 / (arctan(_im[i]/_re[i]) * rad_to_deg)
if new_period > 1.5 * period:
new_period = 1.5 * period
if new_period < 0.67 * period:
new_period = 0.67 * period
if new_period < 6:
new_period = 6
if new_period > 50:
new_period = 50
period = 0.2 * new_period + 0.8 * period
smooth_period = 0.33 * period + 0.67 * smooth_period

dc_period = int(smooth_period + 0.5)
temp_real = 0
for k in range(dc_period):
temp_real += x[i - k]

if dc_period > 0:
temp_real /= dc_period

i_trend[i] = temp_real

if i < 12:
trend_line[i] = x[i]
else:
trend_line[i] = (4 * i_trend[i] + 3 * i_trend[i - 1] + 2 * i_trend[i - 2] + i_trend[i - 3]) / 10.0

return trend_line


def ht_trendline(
close: Series = None, talib: bool = None, offset: Int = None, **kwargs: DictLike
) -> DataFrame:
"""Hilbert Transform TrendLine (Also known as Instantaneous TrendLine)
By removing Dominant Cycle (DC) of the time-series from itself, ht_trendline is calculated.

Sources:
https://c.mql5.com/forextsd/forum/59/023inst.pdf
https://github.com/TA-Lib/ta-lib/blob/main/src/ta_func/ta_HT_TRENDLINE.c

Args:
close (pd.Series): Series of 'close's.
talib (bool): If TA Lib is installed and talib is True, Returns
the TA Lib version. Default: None
offset (int, optional): How many periods to offset the result. Default: 0

Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method

Returns:
pd.DataFrame: Hilbert Transformation Instantaneous Trend-line.
"""
# Validate
_length = 1
close = v_series(close, _length)

if close is None:
return

mode_tal = v_talib(talib)
if Imports["talib"] and mode_tal:
from talib import HT_TRENDLINE
trend_line = HT_TRENDLINE(close)
else:
# calculate ht_trendline using numba
np_close = close.values
trend_line = np_ht_trendline(np_close)

offset = v_offset(offset)

# Offset
if offset != 0:
trend_line = trend_line.shift(offset)

# Fill
if "fillna" in kwargs:
trend_line.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
trend_line.fillna(method=kwargs["fill_method"], inplace=True)

data = {
"ht_trendline": trend_line,
}
df = DataFrame(data, index=close.index)
df.name = "ht_trendline"
df.category = "trend"

return df
Loading