forked from wateraccounting/WA_Hyperloop
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpairwise_validation.py
901 lines (753 loc) · 32.4 KB
/
pairwise_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
# -*- coding: utf-8 -*-
"""
Created on Fri May 27 13:32:47 2016
@author: Bert Coerver (b.coerver [at] un-ihe.org)
"""
import numpy as np
import matplotlib.pyplot as plt
import os
import WA_Hyperloop.becgis as becgis
from scipy import interpolate
import csv
import gdal
import datetime
from matplotlib.colors import LinearSegmentedColormap
def compare_rasters2stations(ds1_fhs, ds1_dates, station_dict, output_dir, station_names = None, quantity_unit = None, dataset_names = None, method = 'cubic', min_records = 1):
"""
Compare a series of raster maps with station time series by computing
the relative bias, RMAE, Pearson-correlation coefficient and
the Nash-Sutcliffe coefficient for each station.
Parameters
----------
ds1_fhs : 1dnarray
List containing filehandles to georeferenced raster files.
ds1_dates : 1dnarray
List containing datetime.date or datetime.datetime objects corresponding
to the filehandles in ds1_fhs. Lenght should be equal to ds1_fhs.
station_dict : dictionary
Dictionary containing coordinates of stations and timeseries. See examples
below for an example
output_dir : str, optional
Directory to store several results, i.e. (1) a csv file to load in a GIS program,
(2) interpolated maps showing the various error indicators spatially and (3)
scatter plots for all the stations.
station_names : dictionary, optional
Dictionary containing names of the respective stations which can be added to the csv-file, see
Examples for more information.
quantity_unit : list, optional
List of two strings describing the quantity and unit of the data.
dataset_name : list, optional
List of strings describing the names of the datasets.
method : str, optional
Method used for interpolation of the error-indicators, i.e.: 'linear', 'nearest' or 'cubic' (default).
Returns
-------
results : dictionary
Dictionary containing several error indicators per station.
Examples
--------
>>> station_dict = {(lat1, lon1): [(datetime.date(year, month, day), data_value),
(datetime.date(year, month, day), data_value),
etc.],
(lat2, lon2): [(datetime.date(year, month, day), data_value),
(datetime.date(year, month, day), data_value),
etc.],
etc.}
>>> station_names = {(lat1,lon1): 'stationname1', (lat2,lon2): 'stationname2', etc.}
>>> results = compare_rasters2stations(ds1_fhs, ds1_dates, station_dict, output_dir = r"C:/Desktop",
station_names = None, quantity_unit = ["P", "mm/month"],
dataset_names = ["CHIRPS", "Meteo Stations"],
method = 'cubic')
"""
results = dict()
pixel_coordinates = list()
if dataset_names is None:
dataset_names = ['Spatial', 'Station']
if quantity_unit is not None:
quantity_unit[1] = r'[' + quantity_unit[1] + r']'
else:
quantity_unit = ['data', '']
becgis.AssertProjResNDV([ds1_fhs])
no_of_stations = len(station_dict.keys())
ds1_dates = becgis.ConvertDatetimeDate(ds1_dates, out = 'datetime')
for i, station in enumerate(station_dict.keys()):
station_dates, station_values = unzip(station_dict[station])
common_dates = becgis.CommonDates([ds1_dates, station_dates])
sample_size = common_dates.size
if sample_size >= min_records:
ds1_values = list()
xpixel, ypixel = pixelcoordinates(station[0], station[1], ds1_fhs[0])
if np.any([np.isnan(xpixel), np.isnan(ypixel)]):
print "Skipping station ({0}), cause its not on the map".format(station)
continue
else:
for date in common_dates:
ds1_values.append(becgis.OpenAsArray(ds1_fhs[ds1_dates == date][0], nan_values = True)[ypixel, xpixel])
common_station_values = [station_values[station_dates == date][0] for date in common_dates]
results[station] = pairwise_validation(ds1_values, common_station_values)
results[station] += (sample_size,)
pixel_coordinates.append((xpixel, ypixel))
#m, b = np.polyfit(ds1_values, common_station_values, 1)
path_scatter = os.path.join(output_dir, 'scatter_plots')
if not os.path.exists(path_scatter):
os.makedirs(path_scatter)
path_ts = os.path.join(output_dir, 'time_series')
if not os.path.exists(path_ts):
os.makedirs(path_ts)
path_int = os.path.join(output_dir, 'interp_errors')
if not os.path.exists(path_int):
os.makedirs(path_int)
xlabel = '{0} {1} {2}'.format(dataset_names[0], quantity_unit[0], quantity_unit[1])
ylabel = '{0} {1} {2}'.format(dataset_names[1], quantity_unit[0], quantity_unit[1])
if station_names is not None:
title = station_names[station]
fn = os.path.join(path_scatter,'{0}_vs_{1}.png'.format(station_names[station], dataset_names[0]))
fnts = os.path.join(path_ts,'{0}_vs_{1}.png'.format(station_names[station], dataset_names[0]))
else:
title = station
fn = os.path.join(path_scatter,'{0}_vs_station_{1}.png'.format(dataset_names[0],i))
fnts = os.path.join(path_ts,'{0}_vs_station_{1}.png'.format(dataset_names[0],i))
suptitle = 'pearson: {0:.5f}, rmse: {1:.5f}, ns: {2:.5f}, bias: {3:.5f}, n: {4:.0f}'.format(results[station][0],results[station][1],results[station][2],results[station][3],results[station][4])
plot_scatter_series(ds1_values, common_station_values, xlabel, ylabel, title, fn, suptitle = suptitle, dates = common_dates)
xaxis_label = '{0} {1}'.format(quantity_unit[0], quantity_unit[1])
xlabel = '{0}'.format(dataset_names[0])
ylabel = '{0}'.format(dataset_names[1])
plot_time_series(ds1_values,common_station_values,common_dates,xlabel,ylabel,xaxis_label, title, fnts, suptitle = suptitle)
print "station {0} ({3}) of {1} finished ({2} matching records)".format(i+1, no_of_stations, sample_size, title)
else:
print "____station {0} of {1} skipped____ (less than {2} matching records)".format(i+1, no_of_stations, min_records)
continue
n = len(results)
csv_filename = os.path.join(output_dir, '{0}stations_vs_{1}_indicators.csv'.format(n, dataset_names[0]))
with open(csv_filename, 'wb') as csv_file:
writer = csv.writer(csv_file, delimiter=';')
writer.writerow(['longitude','latitude','station_id','pearson','rmse','nash_sutcliffe','bias', 'no_of_samples'])
for station in results.keys():
writer.writerow([station[1], station[0], station_names[station], results[station][0],results[station][1],results[station][2],results[station][3],results[station][4]])
rslt = {'Relative Bias':list(),'RMSE':list(),'Pearson Coefficient':list(),'Nash-Sutcliffe Coefficient':list(),'Number Of Samples':list()}
for value in results.values():
rslt['Relative Bias'].append(value[3])
rslt['RMSE'].append(value[1])
rslt['Pearson Coefficient'].append(value[0])
rslt['Nash-Sutcliffe Coefficient'].append(value[2])
rslt['Number Of Samples'].append(value[4])
for key, value in rslt.items():
title = '{0}'.format(key)
print title
if key is 'RMSE':
xlabel = '{0} [mm/month]'.format(key)
else:
xlabel = key
value = np.array(value)
value = value[(~np.isnan(value)) & (~np.isinf(value))]
suptitle = 'mean: {0:.5f}, std: {1:.5f}, n: {2}'.format(np.nanmean(value), np.nanstd(value), n)
print value
plot_histogram(value[(~np.isnan(value)) & (~np.isinf(value))], title, xlabel, output_dir, suptitle = suptitle)
driver, NDV, xsize, ysize, GeoT, Projection = becgis.GetGeoInfo(ds1_fhs[0])
dummy_map = becgis.OpenAsArray(ds1_fhs[0])
grid = np.mgrid[0:ysize, 0:xsize]
var_names = ['pearson', 'rmse', 'ns', 'bias', 'no_of_samples']
for i, var in enumerate(unzip(results.values())):
xy = np.array(pixel_coordinates)[~np.isnan(var)]
z = var[~np.isnan(var)]
interpolation_field = interpolate.griddata(xy, z, (grid[1], grid[0]), method=method, fill_value = np.nanmean(z))
interpolation_field[dummy_map == NDV] = NDV
fh = os.path.join(path_int, '{0}_{1}stations_vs_{2}.tif'.format(var_names[i], len(xy), dataset_names[0]))
becgis.CreateGeoTiff(fh, interpolation_field, driver, NDV, xsize, ysize, GeoT, Projection)
return results
def compare_rasters2rasters(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates, output_dir = None, dataset_names = None, data_treshold = 0.75):
"""
Compare two series of raster maps by computing
the relative bias, RMAE, Pearson-correlation coefficient and
the Nash-Sutcliffe coefficient per pixel.
Parameters
----------
ds1_fhs : list
list pointing to georeferenced raster files of dataset 1.
ds1_dates : list
list corresponding to ds1_fhs specifying the dates.
ds2_fhs : list
list pointing to georeferenced raster files of dataset 2.
ds2_dates : list
list corresponding to ds2_fhs specifying the dates.
quantity_unit : list, optional
list of two strings describing the quantity and unit of the data. e.g. ['Precipitation', 'mm/month'].
dataset_names : list, optional
list of strings describing the names of the datasets. e.g. ['CHIRPS', 'ERA-I'].
output_dir : list, optional
directory to store some results, i.e. (1) a graph of the spatially averaged datasets trough time and the
bias and (2) 4 geotiffs showing the bias, nash-sutcliffe coefficient, pearson coefficient and rmae per pixel.
data_treshold : float, optional
pixels with less than data_treshold * total_number_of_samples actual values are set to no-data, i.e. pixels with
too few data points are ignored.
Returns
-------
results : dict
dictionary with four keys (relative bias, RMAE, Pearson-correlation coefficient and
the Nash-Sutcliffe) with 2dnarrays of the values per pixel.
Examples
--------
>>> results = compare_rasters2rasters(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates,
output_dir = r"C:/Desktop/", quantity_unit = ["P", "mm/month"],
dataset_names = ["CHIRPS", "TRMM"])
"""
becgis.AssertProjResNDV([ds1_fhs, ds2_fhs])
if dataset_names is None:
dataset_names = ['DS1','DS2']
driver, NDV, xsize, ysize, GeoT, Projection = becgis.GetGeoInfo(ds1_fhs[0])
common_dates = becgis.CommonDates([ds1_dates, ds2_dates])
diff_sum = np.zeros((ysize,xsize))
non_nans = np.zeros((ysize,xsize))
progress = 0
samples = len(common_dates)
for date in common_dates:
DS1 = becgis.OpenAsArray(ds1_fhs[ds1_dates == date][0], nan_values = True)
DS2 = becgis.OpenAsArray(ds2_fhs[ds2_dates == date][0], nan_values = True)
DS1[np.isnan(DS2)] = np.nan
DS2[np.isnan(DS1)] = np.nan
non_nans[~np.isnan(DS1)] += np.ones((ysize,xsize))[~np.isnan(DS1)]
diff = (DS1 - DS2)**2
diff_sum[~np.isnan(DS1)] += diff[~np.isnan(DS1)]
progress += 1
print "progress: {0} of {1} finished".format(progress, samples)
diff_sum[non_nans <= data_treshold*samples] = np.nan
results = dict()
results['rmse'] = np.where(non_nans == 0., np.nan, np.sqrt(diff_sum / non_nans))
startdate = common_dates[0].strftime('%Y%m%d')
enddate = common_dates[-1].strftime('%Y%m%d')
path = os.path.join(output_dir, 'spatial_errors')
if not os.path.exists(path):
os.makedirs(path)
if output_dir is not None:
for varname in results.keys():
fh = os.path.join(path, '{0}_{1}_vs_{2}_{3}_{4}.tif'.format(varname, dataset_names[0], dataset_names[1], startdate, enddate))
becgis.CreateGeoTiff(fh, results[varname], driver, NDV, xsize, ysize, GeoT, Projection)
return results
def compare_rasters2rasters_per_lu(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates, lu_fh, output_dir, dataset_names = ["DS1", "DS2"], class_dictionary = None, no_of_classes = 6):
"""
Compare two raster datasets with eachother per different landuse categories.
Parameters
----------
ds1_fhs : ndarray
Array with strings pointing to maps of dataset 1.
ds1_dates : ndarray
Array with same shape as ds1_fhs, containing datetime.date objects.
ds2_fhs : ndarray
Array with strings pointing to maps of dataset 2.
ds2_dates : ndarray
Array with same shape as ds2_fhs, containing datetime.date objects.
lu_fh : str
Pointer to a landusemap.
output_dir : str
Map to save results.
dataset_names : list, optional
List with two strings describing the names of the two datasets.
class_dictionary : dict
Dictionary specifying all the landuse categories.
no_of_classes : int
The 'no_of_classes' most dominant classes in the the lu_fh are compared, the rest is ignored.
"""
LUCS = becgis.OpenAsArray(lu_fh, nan_values = True)
DS1 = becgis.OpenAsArray(ds1_fhs[0], nan_values = True)
DS2 = becgis.OpenAsArray(ds2_fhs[0], nan_values = True)
DS1[np.isnan(DS2)] = np.nan
LUCS[np.isnan(DS1)] = np.nan
classes, counts = np.unique(LUCS[~np.isnan(LUCS)], return_counts = True)
counts_sorted = np.sort(counts)[-no_of_classes:]
selected_lucs = [classes[counts == counter][0] for counter in counts_sorted]
driver, NDV, xsize, ysize, GeoT, Projection = becgis.GetGeoInfo(lu_fh)
becgis.CreateGeoTiff(lu_fh.replace('.tif','_.tif'), LUCS, driver, NDV, xsize, ysize, GeoT, Projection)
common_dates = becgis.CommonDates([ds1_dates, ds2_dates])
ds1_totals = np.array([])
ds2_totals = np.array([])
DS1_per_class = dict()
DS2_per_class = dict()
for date in common_dates:
DS1 = becgis.OpenAsArray(ds1_fhs[ds1_dates == date][0], nan_values = True)
DS2 = becgis.OpenAsArray(ds2_fhs[ds2_dates == date][0], nan_values = True)
for clss in selected_lucs:
if clss in DS1_per_class.keys():
DS1_per_class[clss] = np.append(DS1_per_class[clss], np.nanmean(DS1[LUCS == clss]))
else:
DS1_per_class[clss] = np.array([np.nanmean(DS1[LUCS == clss])])
if clss in DS2_per_class.keys():
DS2_per_class[clss] = np.append(DS2_per_class[clss], np.nanmean(DS2[LUCS == clss]))
else:
DS2_per_class[clss] = np.array([np.nanmean(DS2[LUCS == clss])])
ds1_totals = np.append(ds1_totals, np.nanmean(DS1))
ds2_totals = np.append(ds2_totals, np.nanmean(DS2))
print("Finished {0}, going to {1}".format(date, common_dates[-1]))
for clss in selected_lucs:
if class_dictionary is None:
plot_scatter_series(DS1_per_class[clss], DS2_per_class[clss], dataset_names[0], dataset_names[1], clss, output_dir)
else:
cats = {v[0]: k for k, v in class_dictionary.iteritems()}
plot_scatter_series(DS1_per_class[clss], DS2_per_class[clss], dataset_names[0], dataset_names[1], cats[clss], output_dir)
plot_scatter_series(ds1_totals, ds2_totals, dataset_names[0], dataset_names[1], "Total Area", output_dir)
if class_dictionary is not None:
output_fh = os.path.join(output_dir, 'landuse_percentages.png')
driver, NDV, xsize, ysize, GeoT, Projection = becgis.GetGeoInfo(lu_fh)
becgis.CreateGeoTiff(lu_fh.replace('.tif','_.tif'), LUCS, driver, NDV, xsize, ysize, GeoT, Projection)
becgis.plot_category_areas(lu_fh.replace('.tif','_.tif'), class_dictionary, output_fh, area_treshold = 0.01)
os.remove(lu_fh.replace('.tif','_.tif'))
def plot_scatter_series(x,y,xlabel,ylabel,title, output_dir, suptitle = None, dates = None):
"""
Plot a scatter plot of two datasets with a fitted line trough it.
Parameters
----------
x : 1darray
Array with values for dataset 1.
y : 1darray
Array with values for dataset 2.
xlabel : str
Label to put on the x-axis.
ylabel : str
Label to put on the y-axis.
title : str
Title to put above the graph.
output_dir : str
Folder or path to store graph.
"""
maxi = np.nanmax([np.nanmax(x),np.nanmax(y)])*1.1
mini = np.nanmin([np.nanmin(x),np.nanmin(y), 0.0])*1.1
m, b = np.polyfit(x, y, 1)
if dates != None:
C = np.array([date.month for date in dates])
clrs = ['#6bb8cc','#87c5ad', '#9ad28d', '#acd27a', '#c3b683', '#d4988b', '#b98b89', '#868583', '#497e7c']
cmap = LinearSegmentedColormap.from_list('LUC', clrs, N = 12)
else:
cmap = 'NaN'
C = 'b'
plt.figure(1, figsize = (10,10))
plt.clf()
plt.grid(b=True, which='Major', color='0.65',linestyle='--', zorder = 0)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.scatter(x, y, c = C, cmap = cmap, marker = '.', alpha = 1.0, lw = 0.0, s = 500, vmin = 0.5, vmax = 12.5)
plt.plot([mini, maxi],[mini, maxi], '--k')
plt.plot([mini, maxi], [m*mini + b, m*maxi + b], '-r', label = '{0:.2f} * x + {1:.2f}'.format(m,b))
plt.ylim([mini, maxi])
plt.xlim([mini, maxi])
plt.legend(loc='upper left')
if dates != None:
cbar = plt.colorbar(label = 'Month')
cbar.set_ticks(range(1,13))
cbar.set_ticklabels(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
if suptitle:
plt.suptitle(suptitle)
if output_dir.split('.')[-1] == 'png':
plt.savefig(output_dir)
else:
plt.savefig(os.path.join(output_dir, '{0}.png'.format(title)))
def plot_time_series(x,y,dates,xlabel,ylabel,xaxis_label, title, output_dir, suptitle = None):
plt.figure(2, figsize = (13,5))
plt.clf()
plt.grid(b=True, which='Major', color='0.65',linestyle='--', zorder = 0)
plt.plot(dates, x, '-k')
plt.fill_between(dates,x, color = '#6bb8cc', label = xlabel)
plt.plot(dates, y, color = '#c64345', label = ylabel)
plt.scatter(dates,y,color= '#c64345')
maxi = np.max([x,y]) * 1.1
plt.xlim([np.min(dates),np.max(dates)])
plt.ylim([0, maxi])
plt.xlabel('Time')
plt.ylabel(xaxis_label)
plt.title(title)
if suptitle:
plt.suptitle(suptitle)
plt.legend()
if output_dir.split('.')[-1] == 'png':
plt.savefig(output_dir)
else:
plt.savefig(os.path.join(output_dir, '{0}.png'.format(title)))
def plot_histogram(values, title, xlabel, output_dir, suptitle = None):
values = np.array(values)
#mini = np.nanmin(values)
#maxi = np.nanmax(values)
#bins = np.arange(mini, maxi, (maxi - mini)/(len(values) / 10.))
plt.figure(3, figsize = (10,10))
plt.clf()
plt.grid(b=True, which='Major', color='0.65',linestyle='--', zorder = 0)
plt.hist(values[~np.isnan(values)], color = '#a3db76')
plt.title(title)
if suptitle:
plt.suptitle(suptitle)
plt.xlabel(xlabel)
plt.ylabel('Number of Stations [-]')
if output_dir.split('.')[-1] == 'png':
plt.savefig(output_dir)
else:
plt.savefig(os.path.join(output_dir, '{0}_histogram.png'.format(title)))
def create_dict_entry(csv_fh):
"""Opens a CSV-file and return the station_name, a list with (datetime.datetime, value)
tuples and the coordinates of the station.
Parameters
----------
csv_fh : str
filehandle pointing to a CSV-file with station data. See examples
for the required CSV-format.
Returns
-------
coordinates : tuple
Tuple with the latitude and longitude of the station.
data : list
List with tuples containing a datetime.datetime object and a value.
station_name : str
Name of the station, derived from the CSV's filename.
Examples
--------
The CSV-filename should be the station name and the file should
be formatted as follows:
>>> lat:;<latitude>;lon:;<longitude>;<unit>
datetime;year;month;day;data
<datetime.datetime>;<year>;<month>;<day>;<value>
<datetime.datetime>;<year>;<month>;<day>;<value>
etc.
or
>>> lat:;16.21666667;lon:;107.2833333;mm/month
datetime;year;month;day;data
1976-01-01 00:00:00;1976;1;1;89.89999999999999
1976-02-01 00:00:00;1976;2;1;0.5
etc.
"""
fh = open(csv_fh)
reader = csv.reader(fh, delimiter=';')
data = list()
for i, row in enumerate(reader):
if i == 0:
coordinates = (float(row[1]), float(row[3]))
unit = row[4]
elif i == 1:
pass
else:
try:
time = datetime.datetime.strptime(row[0], "%Y-%m-%d %H:%M:%S")
except:
try:
time = datetime.datetime.strptime(row[0], "%d-%m-%Y %H:%M:%S")
except:
print "date has wrong format for {0}".format(csv_fh)
data.append((time, float(row[4])))
fh.close()
fn = os.path.split(csv_fh)[1]
station_name = fn.split('.')[0]
return coordinates, data, station_name, unit
def create_dictionary(csv_fhs):
"""
Opens multiple CSV-files and returns dictionaries to be used by
compare_rasters2stations.
Parameters
----------
csv_fhs : list
List containing filehandles pointing to CSV-files, where each file
contains data for one station. See examples for the required CSV-
format.
Returns
-------
station_dict : dict
Dictionary with the timeseries for all the stations.
station_names : dict
Dictionary with the names of all the stations.
Examples
--------
>>> lat:;<latitude>;lon:;<longitude>;<unit>
datetime;year;month;day;data
<datetime.datetime>;<year>;<month>;<day>;<value>
<datetime.datetime>;<year>;<month>;<day>;<value>
etc.
or
>>> lat:;16.21666667;lon:;107.2833333;mm/month
datetime;year;month;day;data
1976-01-01 00:00:00;1976;1;1;89.89999999999999
1976-02-01 00:00:00;1976;2;1;0.5
etc.
"""
station_dict = dict()
station_names = dict()
names = list()
for fh in csv_fhs:
print fh
coordinates, data, station_name, unit = create_dict_entry(fh)
if station_name in names:
print "WARNING: station with name {0} already present in dataset".format(station_name)
if coordinates in station_dict.keys():
print "WARNING: station with coordinates {0} already present in dataset".format(coordinates)
names.append(station_name)
station_dict[coordinates] = data
station_names[coordinates] = station_name
return station_dict, station_names
def merge_dictionaries(list_of_dictionaries):
"""
Merges multiple dictionaries into one, gives a warning if keys are
overwritten.
Parameters
----------
list_of_dictionaries : list
List containing the dictionaries to merge.
Returns
-------
merged_dict : dict
The combined dictionary.
"""
merged_dict = dict()
expected_length = 0
for dic in list_of_dictionaries:
expected_length += len(dic.keys())
merged_dict = dict(merged_dict.items() + dic.items())
if expected_length is not len(merged_dict):
print "WARNING: It seems some station(s) with similar keys have been overwritten ({0} != {1}), keys: {2}".format(expected_length, len(merged_dict))
return merged_dict
def error(ds1,ds2):
"""
Calculate the elementwise absolute errors between two series.
Parameters
----------
ds1 : list
List of values.
ds2 : list
List of values to compare with ds1, should be equal length.
Returns
-------
errors : ndarray
List of the elementwise absolute errors (i.e. ds1 - ds2).
mean_error : float
The mean of the elementwise absolute errors.
std_error : float
The standard deviation of the elementwise absolute errors.
"""
station = np.array(ds1)
satellite = np.array(ds2)
station[np.isnan(ds2)] = np.nan
satellite[np.isnan(ds1)] = np.nan
errors = ds2 - ds1
mean_error = np.nanmean(errors)
std_error = np.nanstd(errors)
return errors, mean_error, std_error
def pearson_correlation(ds1,ds2):
"""
Calculate the pearson correlation coefficient for two series.
Parameters
----------
ds1 : list
List of values.
ds2 : list
List of values to compare with ds1, should be equal length.
Returns
-------
pearson : float
The pearson correlation coefficient.
"""
ds1 = np.array(ds1)
ds2 = np.array(ds2)
ds1[np.isnan(ds2)] = np.nan
ds2[np.isnan(ds1)] = np.nan
ds1_min_mean = ds1 - np.nanmean(ds1)
ds2_min_mean = ds2 - np.nanmean(ds2)
pearson = np.nansum(ds1_min_mean * ds2_min_mean) / (np.sqrt(np.nansum(ds1_min_mean**2)) * np.sqrt(np.nansum(ds2_min_mean**2)))
return pearson
def RMSE(ds1,ds2):
"""
Calculate the RMSE for two series.
Parameters
----------
ds1 : list
List of values.
ds2 : list
List of values to compare with ds1, should be equal length.
Returns
-------
rmse : float
The RMSE.
"""
ds1 = np.array(ds1)
ds2 = np.array(ds2)
ds1[np.isnan(ds2)] = np.nan
ds2[np.isnan(ds1)] = np.nan
mse = np.sqrt(np.nanmean((ds1 - ds2)**2))
return mse
def RMAE(ds1, ds2):
"""
Calculate the RMAE for two series.
Parameters
----------
ds1 : list
List of values.
ds2 : list
List of values to compare with ds1, should be equal length.
Returns
-------
rmae : float
The RMAE.
"""
ds1 = np.array(ds1)
ds2 = np.array(ds2)
ds1[np.isnan(ds2)] = np.nan
ds2[np.isnan(ds1)] = np.nan
rmae = (1. / np.nansum(ds1)) * (np.nansum(abs(ds2-ds1))/np.nanmean(ds1))
return rmae
def nash_sutcliffe(ds1, ds2):
"""
Calculate the nash-sutcliffe coefficient for two series.
Parameters
----------
ds1 : list
List of values.
ds2 : list
List of values to compare with ds1, should be equal length.
Returns
-------
ns : float
The nash-sutcliffe coefficient.
"""
ds1 = np.array(ds1)
ds2 = np.array(ds2)
ds1[np.isnan(ds2)] = np.nan
ds2[np.isnan(ds1)] = np.nan
ns = 1. - np.nansum((ds2 - ds1)**2) / np.nansum((ds1 - np.nanmean(ds1))**2)
return ns
def bias(ds1,ds2):
"""
Calculate the relative bias for two series.
Parameters
----------
ds1 : list
List of values.
ds2 : list
List of values to compare with ds1, should be equal length.
Returns
-------
b : float
The relative bias.
"""
ds1 = np.array(ds1)
ds2 = np.array(ds2)
ds1[np.isnan(ds2)] = np.nan
ds2[np.isnan(ds1)] = np.nan
b = np.nansum(ds2)/np.nansum(ds1)
return b
def pairwise_validation(ds1,ds2):
"""
Calculate the relative bias, RMSE, Pearson-correlation coefficient and
the Nash-Sutcliffe coefficient for two series.
Parameters
----------
ds1 : list
List of values.
ds2 : list
List of values to compare with ds1, should be equal length.
Returns
-------
pearson : float
The pearson correlation coefficient.
b : float
The relative bias.
ns : float
The nash-sutcliffe coefficient.
rmse : float
The RMSE.
"""
pearson = pearson_correlation(ds1,ds2)
ns = nash_sutcliffe(ds1, ds2)
b = bias(ds1,ds2)
rmse = RMSE(ds1,ds2)
return pearson, rmse, ns, b
def unzip(list_of_tuples):
"""
Create lists for seperate entries in a list of tuples.
Parameters
----------
list_of_tuples : list
List of tuples, each tuple must be of the same length.
Returns
-------
out : list
List of the first value in each tuple up to a list containing the
last value in each tuple.
"""
out = [np.array(list(t)) for t in zip(*list_of_tuples)]
return out
def pixelcoordinates(lat,lon,rasterfile):
"""
Function to find the corresponding pixel to a latitude and longitude.
Parameters
----------
lat : float or int
Latitude in same unit as provided map, usually decimal degrees.
lon : float or int
Longitude in same unit as provided map, usually decimal degrees.
rasterfile : str
Filehandle pointing to georeferenced rasterfile.
Returns
-------
xpixel : int
The column in which the coordinate is situated.
ypixel : int
The row in which the coordinate is situated.
Examples
--------
>>> xpixel, ypixel = pixelcoordinates(15.2, 120, r"C:/Desktop/map.tif")
>>> xpixel
40
>>> ypixel
24
"""
SourceDS = gdal.Open(rasterfile, gdal.GA_ReadOnly)
xsize = SourceDS.RasterXSize
ysize = SourceDS.RasterYSize
GeoT = SourceDS.GetGeoTransform()
if np.all([lon >= GeoT[0], lon <= GeoT[0] + xsize * GeoT[1], lat <= GeoT[3], lat >= GeoT[3] + ysize * GeoT[5]]):
#assert (lon >= GeoT[0]) & (lon <= GeoT[0] + xsize * GeoT[1]), 'longitude is not on the map {0}'.format((lat,lon))
#assert (lat <= GeoT[3]) & (lat >= GeoT[3] + ysize * GeoT[5]), 'latitude is not on the map {0}'.format((lat,lon))
location = GeoT[0]
xpixel = -1
while location <= lon:
location += GeoT[1]
xpixel += 1
location = GeoT[3]
ypixel = -1
while location >= lat:
location += GeoT[5]
ypixel += 1
else:
print 'longitude or latitude is not on the map {0}, returning NaNs'.format((lat,lon))
xpixel = np.nan
ypixel = np.nan
return xpixel, ypixel
def get_timeseries_raster(ds1_fhs, ds1_dates, coordinates, output_fh, unit = 'm3/s'):
"""
Substract a timeseries from a set of raster files. Store results in a csv-file.
Parameters
----------
ds1_fhs : 1dnarray
List containing filehandles to georeferenced raster files.
ds1_dates : 1dnarray
List containing datetime.date or datetime.datetime objects corresponding
to the filehandles in ds1_fhs. Lenght should be equal to ds1_fhs.
coordinates : tuple
Tuple with the latitude and longitude, (lat, lon).
output_fh : str
Filehandle pointing to a csv-file.
unit : str, optional
String indicating the unit of the data, default is 'm3/s'.
"""
ds1_values = list()
xpixel, ypixel = pixelcoordinates(coordinates[0], coordinates[1], ds1_fhs[0])
if np.any([np.isnan(xpixel), np.isnan(ypixel)]):
print "Coordinates ({0}) not on the map".format(coordinates)
else:
for date in ds1_dates:
ds1_values.append(becgis.OpenAsArray(ds1_fhs[ds1_dates == date][0], nan_values = True)[ypixel, xpixel])
ds1_values = np.array(ds1_values)
csv_file = open(output_fh, 'wb')
writer = csv.writer(csv_file, delimiter=';')
writer.writerow(['lat:',coordinates[0], 'lon:', coordinates[1], unit])
writer.writerow(['datetime','year','month','day','data'])
for date in ds1_dates:
year = date.year
month = date.month
day = date.day
dt = datetime.datetime(year, month, day, 0,0,0)
data = ds1_values[ds1_dates == date][0]
writer.writerow([dt, year, month, day, data])
csv_file.close()