-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
292 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,286 @@ | ||
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions | ||
# are met: | ||
# * Redistributions of source code must retain the above copyright | ||
# notice, this list of conditions and the following disclaimer. | ||
# * Redistributions in binary form must reproduce the above copyright | ||
# notice, this list of conditions and the following disclaimer in the | ||
# documentation and/or other materials provided with the distribution. | ||
# * Neither the name of NVIDIA CORPORATION nor the names of its | ||
# contributors may be used to endorse or promote products derived | ||
# from this software without specific prior written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|
||
import triton_python_backend_utils as pb_utils | ||
from vllm.engine.metrics import StatLoggerBase as VllmStatLoggerBase | ||
from vllm.engine.metrics import Stats as VllmStats | ||
from vllm.engine.metrics import SupportsMetricsInfo | ||
from typing import Dict, Union | ||
|
||
# begin-metrics-definitions | ||
class TritonMetrics: | ||
|
||
def __init__(self, labels): | ||
# System stats | ||
# Scheduler State | ||
self.gauge_scheduler_running_family = pb_utils.MetricFamily( | ||
name="vllm:num_requests_running", | ||
description="Number of requests currently running on GPU.", | ||
kind=pb_utils.MetricFamily.GAUGE) | ||
self.gauge_scheduler_waiting_family = pb_utils.MetricFamily( | ||
name="vllm:num_requests_waiting", | ||
description="Number of requests waiting to be processed.", | ||
kind=pb_utils.MetricFamily.GAUGE) | ||
self.gauge_scheduler_swapped_family = pb_utils.MetricFamily( | ||
name="vllm:num_requests_swapped", | ||
description="Number of requests swapped to CPU.", | ||
kind=pb_utils.MetricFamily.GAUGE) | ||
# KV Cache Usage in % | ||
self.gauge_gpu_cache_usage_family = pb_utils.MetricFamily( | ||
name="vllm:gpu_cache_usage_perc", | ||
description="GPU KV-cache usage. 1 means 100 percent usage.", | ||
kind=pb_utils.MetricFamily.GAUGE) | ||
self.gauge_cpu_cache_usage_family = pb_utils.MetricFamily( | ||
name="vllm:cpu_cache_usage_perc", | ||
description="CPU KV-cache usage. 1 means 100 percent usage.", | ||
kind=pb_utils.MetricFamily.GAUGE) | ||
|
||
# Iteration stats | ||
self.counter_num_preemption_family = pb_utils.MetricFamily( | ||
name="vllm:num_preemptions_total", | ||
description="Cumulative number of preemption from the engine.", | ||
kind=pb_utils.MetricFamily.COUNTER) | ||
self.counter_prompt_tokens_family = pb_utils.MetricFamily( | ||
name="vllm:prompt_tokens_total", | ||
description="Number of prefill tokens processed.", | ||
kind=pb_utils.MetricFamily.COUNTER) | ||
self.counter_generation_tokens_family = pb_utils.MetricFamily( | ||
name="vllm:generation_tokens_total", | ||
description="Number of generation tokens processed.", | ||
kind=pb_utils.MetricFamily.COUNTER) | ||
# self.histogram_time_to_first_token_family = pb_utils.MetricFamily( | ||
# name="vllm:time_to_first_token_seconds", | ||
# description="Histogram of time to first token in seconds.", | ||
# kind=pb_utils.MetricFamily.HISTOGRAM, | ||
# buckets=[ | ||
# 0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5, | ||
# 0.75, 1.0, 2.5, 5.0, 7.5, 10.0 | ||
# ]) | ||
# self.histogram_time_per_output_token_family = pb_utils.MetricFamily( | ||
# name="vllm:time_per_output_token_seconds", | ||
# description="Histogram of time per output token in seconds.", | ||
# kind=pb_utils.MetricFamily.HISTOGRAM, | ||
# buckets=[ | ||
# 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, | ||
# 1.0, 2.5 | ||
# ]) | ||
|
||
# Request stats | ||
# Latency | ||
# self.histogram_e2e_time_request_family = pb_utils.MetricFamily( | ||
# name="vllm:e2e_request_latency_seconds", | ||
# description="Histogram of end to end request latency in seconds.", | ||
# kind=pb_utils.MetricFamily.HISTOGRAM, | ||
# buckets=[1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0]) | ||
# # Metadata | ||
# self.histogram_num_prompt_tokens_request_family = pb_utils.MetricFamily( | ||
# name="vllm:request_prompt_tokens", | ||
# description="Number of prefill tokens processed.", | ||
# kind=pb_utils.MetricFamily.HISTOGRAM, | ||
# buckets=build_1_2_5_buckets(max_model_len), | ||
# ) | ||
# self.histogram_num_generation_tokens_request_family = \ | ||
# pb_utils.MetricFamily( | ||
# name="vllm:request_generation_tokens", | ||
# description="Number of generation tokens processed.", | ||
# kind=pb_utils.MetricFamily.HISTOGRAM, | ||
# buckets=build_1_2_5_buckets(max_model_len), | ||
# ) | ||
# self.histogram_best_of_request_family = pb_utils.MetricFamily( | ||
# name="vllm:request_params_best_of", | ||
# description="Histogram of the best_of request parameter.", | ||
# kind=pb_utils.MetricFamily.HISTOGRAM, | ||
# buckets=[1, 2, 5, 10, 20], | ||
# ) | ||
# self.histogram_n_request_family = pb_utils.MetricFamily( | ||
# name="vllm:request_params_n", | ||
# description="Histogram of the n request parameter.", | ||
# kind=pb_utils.MetricFamily.HISTOGRAM, | ||
# buckets=[1, 2, 5, 10, 20], | ||
# ) | ||
# self.counter_request_success_family = pb_utils.MetricFamily( | ||
# name="vllm:request_success_total", | ||
# description="Count of successfully processed requests.", | ||
# kind=pb_utils.MetricFamily.COUNTER) | ||
|
||
# Speculatie decoding stats | ||
# self.gauge_spec_decode_draft_acceptance_rate_family = pb_utils.MetricFamily( | ||
# name="vllm:spec_decode_draft_acceptance_rate", | ||
# description="Speculative token acceptance rate.", | ||
# kind=pb_utils.MetricFamily.GAUGE) | ||
# self.gauge_spec_decode_efficiency_family = pb_utils.MetricFamily( | ||
# name="vllm:spec_decode_efficiency", | ||
# description="Speculative decoding system efficiency.", | ||
# kind=pb_utils.MetricFamily.GAUGE) | ||
# self.counter_spec_decode_num_accepted_tokens_family = pb_utils.MetricFamily( | ||
# name="vllm:spec_decode_num_accepted_tokens_total", | ||
# description="Number of accepted tokens.", | ||
# kind=pb_utils.MetricFamily.COUNTER) | ||
# self.counter_spec_decode_num_draft_tokens_family = pb_utils.MetricFamily( | ||
# name="vllm:spec_decode_num_draft_tokens_total", | ||
# description="Number of draft tokens.", | ||
# kind=pb_utils.MetricFamily.COUNTER) | ||
# self.counter_spec_decode_num_emitted_tokens_family = pb_utils.MetricFamily( | ||
# name="vllm:spec_decode_num_emitted_tokens_total", | ||
# description="Number of emitted tokens.", | ||
# kind=pb_utils.MetricFamily.COUNTER) | ||
|
||
# System stats | ||
# Scheduler State | ||
self.gauge_scheduler_running = self.gauge_scheduler_running_family.Metric( | ||
labels=labels | ||
) | ||
self.gauge_scheduler_waiting = self.gauge_scheduler_waiting_family.Metric( | ||
labels=labels | ||
) | ||
self.gauge_scheduler_swapped = self.gauge_scheduler_swapped_family.Metric( | ||
labels=labels | ||
) | ||
# KV Cache Usage in % | ||
self.gauge_gpu_cache_usage = self.gauge_gpu_cache_usage_family.Metric( | ||
labels=labels | ||
) | ||
self.gauge_cpu_cache_usage = self.gauge_cpu_cache_usage_family.Metric( | ||
labels=labels | ||
) | ||
|
||
# Iteration stats | ||
self.counter_num_preemption = self.counter_num_preemption_family.Metric( | ||
labels=labels | ||
) | ||
self.counter_prompt_tokens = self.counter_prompt_tokens_family.Metric( | ||
labels=labels | ||
) | ||
self.counter_generation_tokens = self.counter_generation_tokens_family.Metric( | ||
labels=labels | ||
) | ||
# self.histogram_time_to_first_token = self.histogram_time_to_first_token_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.histogram_time_per_output_token = self.histogram_time_per_output_token_family.Metric( | ||
# labels=labels | ||
# ) | ||
|
||
# Request stats | ||
# Latency | ||
# self.histogram_e2e_time_request = self.histogram_e2e_time_request_family.Metric( | ||
# labels=labels | ||
# ) | ||
# # Metadata | ||
# self.histogram_num_prompt_tokens_request = self.histogram_num_prompt_tokens_request_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.histogram_num_generation_tokens_request = self.histogram_num_generation_tokens_request_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.histogram_best_of_request = self.histogram_best_of_request_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.histogram_n_request = self.histogram_n_request_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.counter_request_success = self.counter_request_success_family.Metric( | ||
# labels=labels | ||
# ) | ||
|
||
# Speculatie decoding stats | ||
# self.gauge_spec_decode_draft_acceptance_rate_ = self.gauge_spec_decode_draft_acceptance_rate_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.gauge_spec_decode_efficiency = self.gauge_spec_decode_efficiency_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.counter_spec_decode_num_accepted_tokens = self.counter_spec_decode_num_accepted_tokens_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.counter_spec_decode_num_draft_tokens = self.counter_spec_decode_num_draft_tokens_family.Metric( | ||
# labels=labels | ||
# ) | ||
# self.counter_spec_decode_num_emitted_tokens = self.counter_spec_decode_num_emitted_tokens_family.Metric( | ||
# labels=labels | ||
# ) | ||
|
||
class VllmStatLogger(VllmStatLoggerBase): | ||
""" StatLoggeris used as adapter between vLLM stats collector and Triton metrics provider.""" | ||
|
||
# local_interval not used here. It's for vLLM logs to stdout. | ||
def __init__(self, labels: Dict, local_interval: float=0) -> None: | ||
# Tracked stats over current local logging interval. | ||
super().__init__(local_interval) | ||
self.metrics = TritonMetrics(labels=labels) | ||
|
||
def info(self, type: str, obj: SupportsMetricsInfo) -> None: | ||
raise NotImplementedError | ||
|
||
def _log_gauge(self, gauge, data: Union[int, float]) -> None: | ||
# Convenience function for logging to gauge. | ||
gauge.set(data) | ||
|
||
def _log_counter(self, counter, data: Union[int, float]) -> None: | ||
# Convenience function for logging to counter. | ||
counter.increment(data) | ||
|
||
# def _log_histogram(self, histogram, data: Union[List[int], | ||
# List[float]]) -> None: | ||
# # Convenience function for logging list to histogram. | ||
# for datum in data: | ||
# histogram.labels(**self.labels).observe(datum) | ||
|
||
def log(self, stats: VllmStats) -> None: | ||
|
||
# self.maybe_update_spec_decode_metrics(stats) | ||
|
||
# System state data | ||
self._log_gauge(self.metrics.gauge_scheduler_running, stats.num_running_sys) | ||
self._log_gauge(self.metrics.gauge_scheduler_waiting, stats.num_waiting_sys) | ||
self._log_gauge(self.metrics.gauge_scheduler_swapped, stats.num_swapped_sys) | ||
self._log_gauge(self.metrics.gauge_gpu_cache_usage, stats.gpu_cache_usage_sys) | ||
self._log_gauge(self.metrics.gauge_cpu_cache_usage, stats.cpu_cache_usage_sys) | ||
|
||
# Iteration level data | ||
self._log_counter(self.metrics.counter_num_preemption, stats.num_preemption_iter) | ||
self._log_counter(self.metrics.counter_prompt_tokens, stats.num_prompt_tokens_iter) | ||
self._log_counter(self.metrics.counter_generation_tokens, stats.num_generation_tokens_iter) | ||
# self._log_histogram(self.metrics.histogram_time_to_first_token, stats.time_to_first_tokens_iter) | ||
# self._log_histogram(self.metrics.histogram_time_per_output_token, stats.time_per_output_tokens_iter) | ||
|
||
# Request level data | ||
# Latency | ||
# self._log_histogram(self.metrics.histogram_e2e_time_request, stats.time_e2e_requests) | ||
# Metadata | ||
# self._log_histogram(self.metrics.histogram_num_prompt_tokens_request, stats.num_prompt_tokens_requests) | ||
# self._log_histogram(self.metrics.histogram_num_generation_tokens_request, stats.num_generation_tokens_requests) | ||
# self._log_histogram(self.metrics.histogram_best_of_request, stats.best_of_requests) | ||
# self._log_histogram(self.metrics.histogram_n_request, stats.n_requests) | ||
# self._log_histogram(self.metrics.counter_request_success, stats.finished_reason_requests) | ||
|
||
# Speculatie decoding stats | ||
# if self.spec_decode_metrics is not None: | ||
# self._log_gauge(self.metrics.gauge_spec_decode_draft_acceptance_rate, self.spec_decode_metrics.draft_acceptance_rate) | ||
# self._log_gauge(self.metrics.gauge_spec_decode_efficiency, self.spec_decode_metrics.system_efficiency) | ||
# self._log_counter(self.metrics.counter_spec_decode_num_accepted_tokens, self.spec_decode_metrics.accepted_tokens) | ||
# self._log_counter(self.metrics.counter_spec_decode_num_draft_tokens, self.spec_decode_metrics.draft_tokens) | ||
# self._log_counter(self.metrics.counter_spec_decode_num_emitted_tokens, self.spec_decode_metrics.emitted_tokens) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters