Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test: Client-side input shape/element validation #7427

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Dockerfile.QA
Original file line number Diff line number Diff line change
Expand Up @@ -149,8 +149,8 @@ RUN mkdir -p qa/common && \
cp bin/triton_json_test qa/L0_json/. && \
cp bin/backend_output_detail_test qa/L0_backend_output_detail/. && \
cp -r deploy/mlflow-triton-plugin qa/L0_mlflow/. && \
cp bin/input_byte_size_test qa/L0_input_validation/. && \
cp -r docs/examples/model_repository/simple_identity qa/L0_input_validation/models
cp -r docs/examples/model_repository/{simple,simple_identity,simple_string} qa/L0_input_validation/models && \
rmccorm4 marked this conversation as resolved.
Show resolved Hide resolved
cp bin/input_byte_size_test qa/L0_input_validation/.

RUN mkdir -p qa/pkgs && \
cp python/triton*.whl qa/pkgs/. && \
Expand Down
185 changes: 97 additions & 88 deletions qa/L0_input_validation/input_validation_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,10 @@
import infer_util as iu
import numpy as np
import tritonclient.grpc as tritongrpcclient
import tritonclient.http as tritonhttpclient
import tritonclient.utils as utils
import tritonclient.utils.shared_memory as shm
from tritonclient.utils import InferenceServerException, np_to_triton_dtype
from tritonclient.utils import InferenceServerException


class InputValTest(unittest.TestCase):
Expand Down Expand Up @@ -116,101 +118,108 @@ def test_input_validation_all_optional(self):


class InputShapeTest(unittest.TestCase):
def test_input_shape_validation(self):
input_size = 8
model_name = "pt_identity"
triton_client = tritongrpcclient.InferenceServerClient("localhost:8001")
def test_client_input_shape_validation(self):
model_name = "simple"

# Pass
input_data = np.arange(input_size)[None].astype(np.float32)
inputs = [
tritongrpcclient.InferInput(
"INPUT0", input_data.shape, np_to_triton_dtype(input_data.dtype)
)
]
inputs[0].set_data_from_numpy(input_data)
triton_client.infer(model_name=model_name, inputs=inputs)

# Larger input byte size than expected
input_data = np.arange(input_size + 2)[None].astype(np.float32)
inputs = [
tritongrpcclient.InferInput(
"INPUT0", input_data.shape, np_to_triton_dtype(input_data.dtype)
for client_type in ["http", "grpc"]:
if client_type == "http":
triton_client = tritonhttpclient.InferenceServerClient("localhost:8000")
else:
triton_client = tritongrpcclient.InferenceServerClient("localhost:8001")

# Infer
inputs = []
if client_type == "http":
inputs.append(tritonhttpclient.InferInput("INPUT0", [1, 16], "INT32"))
inputs.append(tritonhttpclient.InferInput("INPUT1", [1, 16], "INT32"))
else:
inputs.append(tritongrpcclient.InferInput("INPUT0", [1, 16], "INT32"))
inputs.append(tritongrpcclient.InferInput("INPUT1", [1, 16], "INT32"))

# Create the data for the two input tensors. Initialize the first
# to unique integers and the second to all ones.
input0_data = np.arange(start=0, stop=16, dtype=np.int32)
input0_data = np.expand_dims(input0_data, axis=0)
input1_data = np.ones(shape=(1, 16), dtype=np.int32)

# Initialize the data
inputs[0].set_data_from_numpy(input0_data)
inputs[1].set_data_from_numpy(input1_data)

# 1. Test wrong shapes with correct element counts
# Compromised input shapes
inputs[0].set_shape([2, 8])
inputs[1].set_shape([2, 8])

# If element count is correct but shape is wrong, core will return an error.
with self.assertRaises(InferenceServerException) as e:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
with self.assertRaises(InferenceServerException) as e:
# If number of elements (volume) is correct but shape is wrong, the core will return an error.
with self.assertRaises(InferenceServerException) as e:

triton_client.infer(model_name=model_name, inputs=inputs)
err_str = str(e.exception)
self.assertIn(
f"unexpected shape for input 'INPUT1' for model 'simple'. Expected [-1,16], got [2,8]",
rmccorm4 marked this conversation as resolved.
Show resolved Hide resolved
err_str,
)
]
inputs[0].set_data_from_numpy(input_data)
# Compromised input shape
inputs[0].set_shape((1, input_size))
with self.assertRaises(InferenceServerException) as e:
triton_client.infer(
model_name=model_name,
inputs=inputs,

# 2. Test wrong shapes with wrong element counts
# Compromised input shapes
inputs[0].set_shape([1, 8])
inputs[1].set_shape([1, 8])

# If element count is wrong, client returns an error.
with self.assertRaises(InferenceServerException) as e:
triton_client.infer(model_name=model_name, inputs=inputs)
err_str = str(e.exception)
self.assertIn(
f"input 'INPUT0' got unexpected elements count 16, expected 8",
err_str,
)
err_str = str(e.exception)
self.assertIn(
"input byte size mismatch for input 'INPUT0' for model 'pt_identity'. Expected 32, got 40",
err_str,
)

def test_input_string_shape_validation(self):
input_size = 16
model_name = "graphdef_object_int32_int32"
np_dtype_string = np.dtype(object)
triton_client = tritongrpcclient.InferenceServerClient("localhost:8001")
def test_client_input_string_shape_validation(self):
for client_type in ["http", "grpc"]:

def get_input_array(input_size, np_dtype):
rinput_dtype = iu._range_repr_dtype(np_dtype)
input_array = np.random.randint(
low=0, high=127, size=(1, input_size), dtype=rinput_dtype
)
def identity_inference(triton_client, np_array, binary_data):
model_name = "simple_identity"

# Convert to string type
inn = np.array(
[str(x) for x in input_array.reshape(input_array.size)], dtype=object
)
input_array = inn.reshape(input_array.shape)
# Total elements no change
inputs = []
if client_type == "http":
inputs.append(
tritonhttpclient.InferInput("INPUT0", np_array.shape, "BYTES")
)
inputs[0].set_data_from_numpy(np_array, binary_data=binary_data)
inputs[0].set_shape([2, 8])
else:
inputs.append(
tritongrpcclient.InferInput("INPUT0", np_array.shape, "BYTES")
)
inputs[0].set_data_from_numpy(np_array)
inputs[0].set_shape([2, 8])
triton_client.infer(model_name=model_name, inputs=inputs)

inputs = []
inputs.append(
tritongrpcclient.InferInput(
"INPUT0", input_array.shape, np_to_triton_dtype(np_dtype)
)
)
inputs.append(
tritongrpcclient.InferInput(
"INPUT1", input_array.shape, np_to_triton_dtype(np_dtype)
)
)
# Compromised input shape
inputs[0].set_shape([1, 8])

inputs[0].set_data_from_numpy(input_array)
inputs[1].set_data_from_numpy(input_array)
return inputs
with self.assertRaises(InferenceServerException) as e:
triton_client.infer(model_name=model_name, inputs=inputs)
err_str = str(e.exception)
self.assertIn(
f"input 'INPUT0' got unexpected elements count 16, expected 8",
err_str,
)

# Input size is less than expected
inputs = get_input_array(input_size - 2, np_dtype_string)
# Compromised input shape
inputs[0].set_shape((1, input_size))
inputs[1].set_shape((1, input_size))
with self.assertRaises(InferenceServerException) as e:
triton_client.infer(model_name=model_name, inputs=inputs)
err_str = str(e.exception)
self.assertIn(
f"expected {input_size} string elements for inference input 'INPUT1', got {input_size-2}",
err_str,
)
if client_type == "http":
triton_client = tritonhttpclient.InferenceServerClient("localhost:8000")
else:
triton_client = tritongrpcclient.InferenceServerClient("localhost:8001")

# Input size is greater than expected
inputs = get_input_array(input_size + 2, np_dtype_string)
# Compromised input shape
inputs[0].set_shape((1, input_size))
inputs[1].set_shape((1, input_size))
with self.assertRaises(InferenceServerException) as e:
triton_client.infer(model_name=model_name, inputs=inputs)
err_str = str(e.exception)
self.assertIn(
f"expected {input_size} string elements for inference input 'INPUT1', got {input_size+2}",
err_str,
)
# Example using BYTES input tensor with 16 elements, where each
# element is a 4-byte binary blob with value 0x00010203. Can use
# dtype=np.bytes_ in this case.
bytes_data = [b"\x00\x01\x02\x03" for i in range(16)]
np_bytes_data = np.array(bytes_data, dtype=np.bytes_)
np_bytes_data = np_bytes_data.reshape([1, 16])
identity_inference(triton_client, np_bytes_data, True) # Using binary data
identity_inference(triton_client, np_bytes_data, False) # Using JSON data

def test_wrong_input_shape_tensor_size(self):
def inference_helper(model_name, batch_size=1):
Expand Down Expand Up @@ -246,12 +255,12 @@ def inference_helper(model_name, batch_size=1):
tritongrpcclient.InferInput(
"DUMMY_INPUT0",
dummy_input_data.shape,
np_to_triton_dtype(np.float32),
utils.np_to_triton_dtype(np.float32),
),
tritongrpcclient.InferInput(
"INPUT0",
shape_tensor_data.shape,
np_to_triton_dtype(np.int32),
utils.np_to_triton_dtype(np.int32),
),
]
inputs[0].set_data_from_numpy(dummy_input_data)
Expand Down
51 changes: 6 additions & 45 deletions qa/L0_input_validation/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ set +e
python3 -m pytest --junitxml="input_validation.report.xml" $TEST_PY::InputValTest >> $CLIENT_LOG 2>&1

if [ $? -ne 0 ]; then
cat $CLIENT_LOG
echo -e "\n***\n*** input_validation_test.py FAILED. \n***"
RET=1
fi
Expand All @@ -80,49 +81,6 @@ wait $SERVER_PID
pip install torch
pip install pytest-asyncio

mkdir -p models/pt_identity/1
PYTHON_CODE=$(cat <<END
import torch
torch.jit.save(
torch.jit.script(torch.nn.Identity()),
"`pwd`/models/pt_identity/1/model.pt",
)
END
)
res="$(python3 -c "$PYTHON_CODE")"

if [ $? -ne 0 ]; then
echo -e "\n***\n*** model "pt_identity" initialization FAILED. \n***"
echo $res
exit 1
fi

# Create the config.pbtxt file with the specified configuration
cat > models/pt_identity/config.pbtxt << EOL
name: "pt_identity"
backend: "pytorch"
max_batch_size: 8
input [
{
name: "INPUT0"
data_type: TYPE_FP32
dims: [8]
}
]
output [
{
name: "OUTPUT0"
data_type: TYPE_FP32
dims: [8]
}
]
# ensure we batch requests together
dynamic_batching {
max_queue_delay_microseconds: 1000000
}
rmccorm4 marked this conversation as resolved.
Show resolved Hide resolved
EOL

cp -r $DATADIR/qa_model_repository/graphdef_object_int32_int32 models/.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why removed?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use model "simple_identity" instead to test string inputs.

cp -r $DATADIR/qa_shapetensor_model_repository/plan_nobatch_zero_1_float32_int32 models/.
cp -r $DATADIR/qa_shapetensor_model_repository/plan_zero_1_float32_int32 models/.

Expand All @@ -138,6 +96,7 @@ set +e
python3 -m pytest --junitxml="input_shape_validation.report.xml" $TEST_PY::InputShapeTest >> $CLIENT_LOG 2>&1

if [ $? -ne 0 ]; then
cat $CLIENT_LOG
echo -e "\n***\n*** input_validation_test.py FAILED. \n***"
RET=1
fi
Expand All @@ -147,18 +106,20 @@ kill $SERVER_PID
wait $SERVER_PID

# input_byte_size_test
cp -r /data/inferenceserver/${REPO_VERSION}/qa_identity_model_repository/{savedmodel_zero_1_float32,savedmodel_zero_1_object} ./models

set +e
LD_LIBRARY_PATH=/opt/tritonserver/lib:$LD_LIBRARY_PATH $TEST_EXEC >>$TEST_LOG 2>&1
if [ $? -ne 0 ]; then
echo -e "\n***\n*** Query Unit Test Failed\n***"
cat $TEST_LOG
echo -e "\n***\n*** input_byte_size_test FAILED\n***"
RET=1
fi
set -e

if [ $RET -eq 0 ]; then
echo -e "\n***\n*** Input Validation Test Passed\n***"
else
cat $CLIENT_LOG
cat $SERVER_LOG
echo -e "\n***\n*** Input Validation Test FAILED\n***"
fi
Expand Down
Loading