Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add prefix prompt generation to GenAI-Perf #208

Merged
merged 3 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions genai-perf/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -293,6 +293,9 @@ options:
filepaths to images to use for benchmarking as JSON objects.

For any dataset, you can specify the following options:
* `--num-prefix-prompts <int>`: The number of synthetic prefix prompts to
sample from. If this value is >0, synthetic prefix prompts will be prepended
to user prompts.
* `--output-tokens-mean <int>`: The mean number of tokens in each output. Ensure
the `--tokenizer` value is set correctly, >= 1.
* `--output-tokens-stddev <int>`: The standard deviation of the number of tokens
Expand All @@ -303,6 +306,8 @@ For any dataset, you can specify the following options:
Triton service-kind. Note that there is still some variability in the
requested number of output tokens, but GenAi-Perf attempts its best effort
with your model to get the right number of output tokens.
* `--prefix-prompt-length <int>`: The number of tokens to include in each
prefix prompt. This value is only used if --num-prefix-prompts is positive.

You can optionally set additional model inputs with the following option:
* `--extra-inputs <input_name>:<value>`: An additional input for use with the
Expand Down Expand Up @@ -461,6 +466,12 @@ extensions. For example, 'synthetic:queries,passages'.
The number of unique payloads to sample from. These will be reused until
benchmarking is complete. (default: `100`)

##### `--num-prefix-prompts <int>`

The number of prefix prompts to select from. If this value is not zero, these
are prompts that are prepended to input prompts. This is useful for
benchmarking models that use a K-V cache. (default: `0`)

##### `--output-tokens-mean <int>`
##### `--osl`

Expand Down Expand Up @@ -502,6 +513,13 @@ data. (default: `550`)
The standard deviation of number of tokens in the generated prompts when
using synthetic data. (default: `0`)

##### `--prefix-prompt-length <int>`

The number of tokens in each prefix prompt. This value is only used if
--num-prefix-prompts is positive. Note that due to the prefix and user prompts
being concatenated, the number of tokens in the final prompt may be off by one.
(default: `100`)

##### `--warmup-request-count <int>`

The number of warmup requests to send before benchmarking. (default: `0`)
Expand Down
2 changes: 2 additions & 0 deletions genai-perf/genai_perf/inputs/input_constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,8 @@ def to_lowercase(self):
DEFAULT_OUTPUT_TOKENS_MEAN = -1
DEFAULT_OUTPUT_TOKENS_STDDEV = 0
DEFAULT_NUM_DATASET_ENTRIES = 100
DEFAULT_NUM_PREFIX_PROMPTS = 0
DEFAULT_PREFIX_PROMPT_LENGTH = 100

###########################
# Default Image Parameters
Expand Down
8 changes: 8 additions & 0 deletions genai-perf/genai_perf/inputs/inputs_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,10 @@
DEFAULT_IMAGE_WIDTH_STDDEV,
DEFAULT_LENGTH,
DEFAULT_NUM_DATASET_ENTRIES,
DEFAULT_NUM_PREFIX_PROMPTS,
DEFAULT_OUTPUT_TOKENS_MEAN,
DEFAULT_OUTPUT_TOKENS_STDDEV,
DEFAULT_PREFIX_PROMPT_LENGTH,
DEFAULT_PROMPT_TOKENS_MEAN,
DEFAULT_PROMPT_TOKENS_STDDEV,
DEFAULT_RANDOM_SEED,
Expand Down Expand Up @@ -142,3 +144,9 @@ class InputsConfig:

# Seed used to generate random values
random_seed: int = DEFAULT_RANDOM_SEED

# The number of prefix prompts to generate and pool from
num_prefix_prompts: int = DEFAULT_NUM_PREFIX_PROMPTS

# The length of the prefix prompts to generate
prefix_prompt_length: int = DEFAULT_PREFIX_PROMPT_LENGTH
20 changes: 19 additions & 1 deletion genai-perf/genai_perf/inputs/retrievers/file_input_retriever.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,9 @@
GenericDataset,
)
from genai_perf.inputs.retrievers.synthetic_image_generator import ImageFormat
from genai_perf.inputs.retrievers.synthetic_prompt_generator import (
SyntheticPromptGenerator,
)
from genai_perf.utils import load_json_str
from PIL import Image

Expand Down Expand Up @@ -152,6 +155,15 @@ def _get_content_from_input_file(
"""
prompts = []
images = []

use_prefix_prompts = self.config.num_prefix_prompts > 0
if use_prefix_prompts:
SyntheticPromptGenerator.create_prefix_prompts_pool(
self.config.tokenizer,
self.config.num_prefix_prompts,
self.config.prefix_prompt_length,
)

with open(filename, mode="r", newline=None) as file:
for line in file:
if line.strip():
Expand All @@ -164,7 +176,13 @@ def _get_content_from_input_file(
"Each data entry must have only one of 'text_input' or 'text' key name."
)
prompt = prompt if prompt else prompt_alt
prompts.append(prompt.strip() if prompt else prompt)
if use_prefix_prompts:
prefix_prompt = (
SyntheticPromptGenerator.get_random_prefix_prompt()
)
prompt = f"{prefix_prompt} {prompt}"
if prompt is not None:
prompts.append(prompt.strip())
image = data.get("image")
if image is not None:
image = self._encode_image(image.strip())
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -51,17 +51,30 @@ def retrieve_data(self) -> GenericDataset:
files = self.config.synthetic_input_filenames or [DEFAULT_SYNTHETIC_FILENAME]
synthetic_dataset = GenericDataset(files_data={})

use_prefix_prompts = self.config.num_prefix_prompts > 0
if use_prefix_prompts:
SyntheticPromptGenerator.create_prefix_prompts_pool(
self.config.tokenizer,
self.config.num_prefix_prompts,
self.config.prefix_prompt_length,
)

for file in files:
data_rows: List[DataRow] = []

for _ in range(self.config.num_dataset_entries):
row = DataRow(texts=[], images=[])
prompt = SyntheticPromptGenerator.create_synthetic_prompt(
self.config.tokenizer,
self.config.prompt_tokens_mean,
self.config.prompt_tokens_stddev,
)
for _ in range(self.config.batch_size_text):
prompt = SyntheticPromptGenerator.create_synthetic_prompt(
self.config.tokenizer,
self.config.prompt_tokens_mean,
self.config.prompt_tokens_stddev,
)
if use_prefix_prompts:
prefix_prompt = (
SyntheticPromptGenerator.get_random_prefix_prompt()
)
prompt = f"{prefix_prompt} {prompt}"
row.texts.append(prompt)

for _ in range(self.config.batch_size_image):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
class SyntheticPromptGenerator:
_tokenized_corpus = None
_corpus_length = 0
_prefix_prompts: List[str] = []

@classmethod
def create_synthetic_prompt(
Expand Down Expand Up @@ -106,3 +107,32 @@ def _generate_prompt(cls, tokenizer: Tokenizer, num_tokens: int) -> str:
prompt_tokens += cls._tokenized_corpus[: end_idx - cls._corpus_length]

return tokenizer.decode(prompt_tokens)

@classmethod
def create_prefix_prompts_pool(
cls, tokenizer: Tokenizer, num_prompts: int, prompt_length: int
) -> None:
"""
Generate a pool of prefix prompts.

Args:
tokenizer: Tokenizer instance.
num_prompts: Number of prefix prompts to generate.
prompt_length: Number of tokens per prefix prompt.
"""
if cls._tokenized_corpus is None:
cls._initialize_corpus(tokenizer)

cls._prefix_prompts = [
cls._generate_prompt(tokenizer, prompt_length) for _ in range(num_prompts)
]

@classmethod
def get_random_prefix_prompt(cls) -> str:
"""
Fetch a random prefix prompt from the pool.

Returns:
A random prefix prompt.
"""
return random.choice(cls._prefix_prompts)
2 changes: 2 additions & 0 deletions genai-perf/genai_perf/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,8 @@ def create_config_options(args: Namespace) -> InputsConfig:
batch_size_image=args.batch_size_image,
batch_size_text=args.batch_size_text,
output_dir=args.artifact_dir,
num_prefix_prompts=args.num_prefix_prompts,
prefix_prompt_length=args.prefix_prompt_length,
)


Expand Down
22 changes: 22 additions & 0 deletions genai-perf/genai_perf/parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -506,6 +506,17 @@ def _add_input_args(parser):
"These will be reused until benchmarking is complete.",
)

input_group.add_argument(
"--num-prefix-prompts",
type=int,
default=ic.DEFAULT_NUM_PREFIX_PROMPTS,
required=False,
help=f"The number of prefix prompts to select from. "
"If this value is not zero, these are prompts that are "
"prepended to input prompts. This is useful for "
"benchmarking models that use a K-V cache.",
)

input_group.add_argument(
"--output-tokens-mean",
"--osl",
Expand Down Expand Up @@ -573,6 +584,17 @@ def _add_input_args(parser):
help=f"The standard deviation of number of tokens in the generated prompts when using synthetic data.",
)

input_group.add_argument(
"--prefix-prompt-length",
type=int,
default=ic.DEFAULT_PREFIX_PROMPT_LENGTH,
required=False,
help=f"The number of tokens in each prefix prompt. This value is only "
"used if --num-prefix-prompts is positive. Note that due to "
"the prefix and user prompts being concatenated, the number of tokens "
"in the final prompt may be off by one.",
)

input_group.add_argument(
"--warmup-request-count",
type=int,
Expand Down
2 changes: 2 additions & 0 deletions genai-perf/genai_perf/wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,7 @@ def build_cmd(args: Namespace, extra_args: Optional[List[str]] = None) -> List[s
"model",
"model_selection_strategy",
"num_dataset_entries",
"num_prefix_prompts",
"output_format",
"output_tokens_mean",
"output_tokens_mean_deterministic",
Expand All @@ -105,6 +106,7 @@ def build_cmd(args: Namespace, extra_args: Optional[List[str]] = None) -> List[s
"synthetic_input_files",
"synthetic_input_tokens_mean",
"synthetic_input_tokens_stddev",
"prefix_prompt_length",
"tokenizer",
"tokenizer_trust_remote_code",
"tokenizer_revision",
Expand Down
5 changes: 5 additions & 0 deletions genai-perf/tests/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,6 +192,7 @@ def test_help_version_arguments_output_and_exit(
),
(["--num-dataset-entries", "101"], {"num_dataset_entries": 101}),
(["--num-prompts", "101"], {"num_dataset_entries": 101}),
(["--num-prefix-prompts", "101"], {"num_prefix_prompts": 101}),
(
["--output-tokens-mean", "6"],
{"output_tokens_mean": 6},
Expand Down Expand Up @@ -245,6 +246,10 @@ def test_help_version_arguments_output_and_exit(
["--synthetic-input-tokens-stddev", "7"],
{"synthetic_input_tokens_stddev": 7},
),
(
["--prefix-prompt-length", "6"],
{"prefix_prompt_length": 6},
),
(
["--image-width-mean", "123"],
{"image_width_mean": 123},
Expand Down
36 changes: 36 additions & 0 deletions genai-perf/tests/test_file_input_retriever.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,3 +346,39 @@ def test_get_input_datasets_from_empty_dir(
)
with pytest.raises(ValueError, match="No JSONL files found in directory"):
_ = file_retriever._get_input_datasets_from_dir()

@patch("builtins.open", side_effect=open_side_effect)
@patch(
"genai_perf.inputs.retrievers.file_input_retriever.SyntheticPromptGenerator.create_prefix_prompts_pool"
)
@patch(
"genai_perf.inputs.retrievers.file_input_retriever.SyntheticPromptGenerator.get_random_prefix_prompt",
return_value="prefix prompt",
)
@patch("pathlib.Path.exists", return_value=True)
def test_get_input_file_multiple_prompts_with_prefix_prompts(
self,
mock_exists,
mock_random_prefix_prompt,
mock_create_prefix_prompts_pool,
mock_file,
):
file_retriever = FileInputRetriever(
InputsConfig(
tokenizer=get_empty_tokenizer(),
model_name=["test_model_A"],
model_selection_strategy=ModelSelectionStrategy.ROUND_ROBIN,
input_filename=Path("multiple_prompts.jsonl"),
num_prefix_prompts=3,
prefix_prompt_length=15,
)
)
file_data = file_retriever._get_input_dataset_from_file(
Path("multiple_prompts.jsonl")
)

assert file_data is not None
assert len(file_data.rows) == 3
mock_create_prefix_prompts_pool.assert_called_once()
for row in file_data.rows:
assert row.texts[0].startswith("prefix prompt ")
2 changes: 2 additions & 0 deletions genai-perf/tests/test_json_exporter.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,7 @@ class TestJsonExporter:
"streaming": true,
"u": null,
"num_dataset_entries": 100,
"num_prefix_prompts": 0,
"output_tokens_mean": -1,
"output_tokens_mean_deterministic": false,
"output_tokens_stddev": 0,
Expand All @@ -232,6 +233,7 @@ class TestJsonExporter:
"synthetic_input_files": null,
"synthetic_input_tokens_mean": 550,
"synthetic_input_tokens_stddev": 0,
"prefix_prompt_length": 100,
"warmup_request_count": 0,
"image_width_mean": 100,
"image_width_stddev": 0,
Expand Down
52 changes: 52 additions & 0 deletions genai-perf/tests/test_synthetic_data_retriever.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,3 +139,55 @@ def test_synthetic_multiple_files(self, mock_prompt, mock_image):
assert len(row.images) == 1
assert row.texts[0] == "test prompt"
assert row.images[0] == "_base64_encoding"

@patch(
"genai_perf.inputs.retrievers.synthetic_data_retriever.SyntheticPromptGenerator.create_synthetic_prompt",
return_value="test prompt",
)
@patch(
"genai_perf.inputs.retrievers.synthetic_data_retriever.SyntheticPromptGenerator.create_prefix_prompts_pool"
)
@patch(
"genai_perf.inputs.retrievers.synthetic_data_retriever.SyntheticPromptGenerator.get_random_prefix_prompt",
return_value="prompt prefix",
)
def test_synthetic_with_prefix_prompts(
self,
mock_random_prefix_prompt,
mock_create_prefix_prompts_pool,
mock_create_synthetic_prompt,
):
config = InputsConfig(
num_dataset_entries=3,
num_prefix_prompts=3,
prefix_prompt_length=20,
batch_size_text=1,
output_format=OutputFormat.OPENAI_COMPLETIONS,
synthetic_input_filenames=[DEFAULT_SYNTHETIC_FILENAME],
tokenizer=get_empty_tokenizer(),
)

synthetic_retriever = SyntheticDataRetriever(config)
dataset = synthetic_retriever.retrieve_data()

# Validate the number of rows in the retrieved dataset matches the expected count
synthetic_input_filenames = cast(list[str], config.synthetic_input_filenames)
expected_row_count = config.num_dataset_entries
actual_row_count = len(dataset.files_data[synthetic_input_filenames[0]].rows)

assert (
actual_row_count == expected_row_count
), f"Expected {expected_row_count} rows, got {actual_row_count}"

# Ensure the prompt prefixess pool was created exactly once
mock_create_prefix_prompts_pool.assert_called_once()

# Validate that every text in the dataset has the right prefix
for row_index, row in enumerate(
dataset.files_data[synthetic_input_filenames[0]].rows
):
expected_prefix = "prompt prefix "
for text_index, text in enumerate(row.texts):
assert text.startswith(
expected_prefix
), f"Row {row_index}, text {text_index}: text does not start with '{expected_prefix}'. Actual: '{text}'"
Loading
Loading