-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
create unittests for file input retriever
- Loading branch information
Showing
3 changed files
with
229 additions
and
160 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions | ||
# are met: | ||
# * Redistributions of source code must retain the above copyright | ||
# notice, this list of conditions and the following disclaimer. | ||
# * Redistributions in binary form must reproduce the above copyright | ||
# notice, this list of conditions and the following disclaimer in the | ||
# documentation and/or other materials provided with the distribution. | ||
# * Neither the name of NVIDIA CORPORATION nor the names of its | ||
# contributors may be used to endorse or promote products derived | ||
# from this software without specific prior written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|
||
from collections import namedtuple | ||
from pathlib import Path | ||
from unittest.mock import mock_open, patch | ||
|
||
import pytest | ||
from genai_perf.inputs.file_input_retriever import FileInputRetriever | ||
from genai_perf.inputs.input_constants import ModelSelectionStrategy | ||
from genai_perf.inputs.inputs_config import InputsConfig | ||
from PIL import Image | ||
|
||
|
||
class TestFileInputRetriever: | ||
@patch("pathlib.Path.exists", return_value=True) | ||
@patch( | ||
"builtins.open", | ||
new_callable=mock_open, | ||
read_data="\n".join( | ||
[ | ||
'{"text": "What production company co-owned by Kevin Loader and Rodger Michell produced My Cousin Rachel?"}', | ||
'{"text": "Who served as the 1st Vice President of Colombia under El Libertador?"}', | ||
'{"text": "Are the Barton Mine and Hermiston-McCauley Mine located in The United States of America?"}', | ||
'{"text": "what state did they film daddy\'s home 2"}', | ||
] | ||
), | ||
) | ||
def test_get_input_dataset_from_embeddings_file(self, mock_file, mock_exists): | ||
batch_size = 3 | ||
config = InputsConfig( | ||
input_filename=Path("embeddings.jsonl"), | ||
batch_size=batch_size, | ||
num_prompts=100, | ||
) | ||
file_retriever = FileInputRetriever(config) | ||
dataset = file_retriever._get_input_dataset_from_embeddings_file() | ||
|
||
assert dataset is not None | ||
assert len(dataset["rows"]) == 100 | ||
for row in dataset["rows"]: | ||
assert "row" in row | ||
assert "payload" in row["row"] | ||
payload = row["row"]["payload"] | ||
assert "input" in payload | ||
assert isinstance(payload["input"], list) | ||
assert len(payload["input"]) == batch_size | ||
|
||
# Try error case where batch size is larger than the number of available texts | ||
with pytest.raises( | ||
ValueError, | ||
match="Batch size cannot be larger than the number of available texts", | ||
): | ||
config.batch_size = 5 | ||
file_retriever._get_input_dataset_from_embeddings_file() | ||
|
||
def open_side_effects(self, filepath, *args, **kwargs): | ||
queries_content = "\n".join( | ||
[ | ||
'{"text": "What production company co-owned by Kevin Loader and Rodger Michell produced My Cousin Rachel?"}', | ||
'{"text": "Who served as the 1st Vice President of Colombia under El Libertador?"}', | ||
'{"text": "Are the Barton Mine and Hermiston-McCauley Mine located in The United States of America?"}', | ||
] | ||
) | ||
passages_content = "\n".join( | ||
[ | ||
'{"text": "Eric Anderson (sociologist) Eric Anderson (born January 18, 1968) is an American sociologist"}', | ||
'{"text": "Kevin Loader is a British film and television producer. "}', | ||
'{"text": "Barton Mine, also known as Net Lake Mine, is an abandoned surface and underground mine in Northeastern Ontario"}', | ||
] | ||
) | ||
|
||
file_contents = { | ||
"queries.jsonl": queries_content, | ||
"passages.jsonl": passages_content, | ||
} | ||
return mock_open( | ||
read_data=file_contents.get(filepath, file_contents["queries.jsonl"]) | ||
)() | ||
|
||
mock_open_obj = mock_open() | ||
mock_open_obj.side_effect = open_side_effects | ||
|
||
@patch("pathlib.Path.exists", return_value=True) | ||
@patch("builtins.open", mock_open_obj) | ||
def test_get_input_dataset_from_rankings_file(self, mock_file): | ||
queries_filename = Path("queries.jsonl") | ||
passages_filename = Path("passages.jsonl") | ||
batch_size = 2 | ||
config = InputsConfig( | ||
batch_size=batch_size, | ||
num_prompts=100, | ||
) | ||
file_retriever = FileInputRetriever(config) | ||
dataset = file_retriever._get_input_dataset_from_rankings_files( | ||
queries_filename=queries_filename, passages_filename=passages_filename | ||
) | ||
|
||
assert dataset is not None | ||
assert len(dataset["rows"]) == 100 | ||
for row in dataset["rows"]: | ||
assert "row" in row | ||
assert "payload" in row["row"] | ||
payload = row["row"]["payload"] | ||
assert "query" in payload | ||
assert "passages" in payload | ||
assert isinstance(payload["passages"], list) | ||
assert len(payload["passages"]) == batch_size | ||
|
||
# Try error case where batch size is larger than the number of available texts | ||
with pytest.raises( | ||
ValueError, | ||
match="Batch size cannot be larger than the number of available passages", | ||
): | ||
config.batch_size = 5 | ||
file_retriever._get_input_dataset_from_rankings_files( | ||
queries_filename, passages_filename | ||
) | ||
|
||
def test_get_input_file_without_file_existing(self): | ||
file_retriever = FileInputRetriever( | ||
InputsConfig(input_filename=Path("prompt.txt")) | ||
) | ||
with pytest.raises(FileNotFoundError): | ||
file_retriever._get_input_dataset_from_file() | ||
|
||
@patch("pathlib.Path.exists", return_value=True) | ||
@patch( | ||
"builtins.open", | ||
new_callable=mock_open, | ||
read_data='{"text_input": "single prompt"}\n', | ||
) | ||
def test_get_input_file_with_single_prompt(self, mock_file, mock_exists): | ||
expected_prompts = ["single prompt"] | ||
file_retriever = FileInputRetriever( | ||
InputsConfig( | ||
model_name=["test_model_A"], | ||
model_selection_strategy=ModelSelectionStrategy.ROUND_ROBIN, | ||
input_filename=Path("prompt.txt"), | ||
) | ||
) | ||
dataset = file_retriever._get_input_dataset_from_file() | ||
|
||
assert dataset is not None | ||
assert len(dataset["rows"]) == len(expected_prompts) | ||
for i, prompt in enumerate(expected_prompts): | ||
assert dataset["rows"][i]["row"]["text_input"] == prompt | ||
|
||
@patch("pathlib.Path.exists", return_value=True) | ||
@patch( | ||
"builtins.open", | ||
new_callable=mock_open, | ||
read_data='{"text_input": "prompt1"}\n{"text_input": "prompt2"}\n{"text_input": "prompt3"}\n', | ||
) | ||
def test_get_input_file_with_multiple_prompts(self, mock_file, mock_exists): | ||
expected_prompts = ["prompt1", "prompt2", "prompt3"] | ||
file_retriever = FileInputRetriever( | ||
InputsConfig( | ||
model_name=["test_model_A"], | ||
model_selection_strategy=ModelSelectionStrategy.ROUND_ROBIN, | ||
input_filename=Path("prompt.txt"), | ||
) | ||
) | ||
dataset = file_retriever._get_input_dataset_from_file() | ||
|
||
assert dataset is not None | ||
assert len(dataset["rows"]) == len(expected_prompts) | ||
for i, prompt in enumerate(expected_prompts): | ||
assert dataset["rows"][i]["row"]["text_input"] == prompt | ||
|
||
@patch("pathlib.Path.exists", return_value=True) | ||
@patch("PIL.Image.open", return_value=Image.new("RGB", (10, 10))) | ||
@patch( | ||
"builtins.open", | ||
new_callable=mock_open, | ||
read_data=( | ||
'{"text_input": "prompt1", "image": "image1.png"}\n' | ||
'{"text_input": "prompt2", "image": "image2.png"}\n' | ||
'{"text_input": "prompt3", "image": "image3.png"}\n' | ||
), | ||
) | ||
def test_get_input_file_with_multi_modal_data( | ||
self, mock_exists, mock_image, mock_file | ||
): | ||
file_retriever = FileInputRetriever( | ||
InputsConfig( | ||
model_name=["test_model_A"], | ||
model_selection_strategy=ModelSelectionStrategy.ROUND_ROBIN, | ||
input_filename=Path("prompt.txt"), | ||
) | ||
) | ||
Data = namedtuple("Data", ["text_input", "image"]) | ||
expected_data = [ | ||
Data(text_input="prompt1", image="image1.png"), | ||
Data(text_input="prompt2", image="image2.png"), | ||
Data(text_input="prompt3", image="image3.png"), | ||
] | ||
dataset = file_retriever._get_input_dataset_from_file() | ||
|
||
assert dataset is not None | ||
assert len(dataset["rows"]) == len(expected_data) | ||
for i, data in enumerate(expected_data): | ||
assert dataset["rows"][i]["row"]["text_input"] == data.text_input | ||
assert dataset["rows"][i]["row"]["image"] == data.image |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.