Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optuna Early Exit #890

Merged
merged 2 commits into from
Jun 3, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 92 additions & 6 deletions model_analyzer/config/generate/optuna_run_config_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,7 @@ def __init__(
self._last_measurement: Optional[RunConfigMeasurement] = None
self._best_config_name = ""
self._best_config_score: Optional[float] = None
self._best_trial_number: Optional[int] = None

self._c_api_mode = config.triton_launch_mode == "c_api"

Expand Down Expand Up @@ -155,12 +156,13 @@ def get_configs(self) -> Generator[RunConfig, None, None]:
if logging.DEBUG:
self._print_debug_search_space_info()

min_configs_to_search = self._determine_minimum_number_of_configs_to_search()
max_configs_to_search = self._determine_maximum_number_of_configs_to_search()
# TODO: TMA-1885: Need an early exit strategy
for trial_count in range(max_configs_to_search):
for trial_number in range(max_configs_to_search):
trial = self._study.ask()
trial_objectives = self._create_trial_objectives(trial)
logger.debug(f"Trial {trial_count+1} of {max_configs_to_search}:")
logger.debug(f"Trial {trial_number+1} of {max_configs_to_search}:")
tgerdesnv marked this conversation as resolved.
Show resolved Hide resolved
run_config = self._create_objective_based_run_config(trial_objectives)
yield run_config

Expand All @@ -170,6 +172,9 @@ def get_configs(self) -> Generator[RunConfig, None, None]:
if logging.DEBUG:
self._print_debug_score_info(run_config, score)

if self._should_terminate_early(min_configs_to_search, trial_number):
logger.debug("Early termination threshold reached")
break
self._study.tell(trial, score)

def _capture_default_measurement(self, default_run_config: RunConfig) -> None:
Expand All @@ -180,17 +185,20 @@ def _capture_default_measurement(self, default_run_config: RunConfig) -> None:

self._default_measurement = self._last_measurement

def _set_best_measurement(self, run_config: RunConfig, score: float = 0) -> None:
def _set_best_measurement(
self, run_config: RunConfig, score: float = 0, trial_number: int = 0
) -> None:
if self._best_config_score is None or score > self._best_config_score:
self._best_config_name = run_config.model_variants_name()
self._best_config_score = score
self._best_trial_number = trial_number

def _determine_maximum_number_of_configs_to_search(self) -> int:
max_trials_based_on_percentage_of_search_space = (
self._determine_trials_based_on_max_percentage_of_search_space()
)

max_configs_to_search = self._decide_between_percentage_and_trial_count(
max_configs_to_search = self._decide_max_between_percentage_and_trial_count(
max_trials_based_on_percentage_of_search_space
)

Expand All @@ -208,7 +216,7 @@ def _determine_trials_based_on_max_percentage_of_search_space(self) -> int:

return max_trials_based_on_percentage_of_search_space

def _decide_between_percentage_and_trial_count(
def _decide_max_between_percentage_and_trial_count(
tgerdesnv marked this conversation as resolved.
Show resolved Hide resolved
self, max_trials_based_on_percentage_of_search_space: int
) -> int:
# By default we will search based on percentage of search space
Expand Down Expand Up @@ -238,7 +246,7 @@ def _decide_between_percentage_and_trial_count(
max_configs_to_search = max_trials_based_on_percentage_of_search_space
elif max_trials_set_by_user:
logger.debug(
f"Maximum number of trials: {self._config.optuna_max_trials} (set by max. trials)"
f"Maximum number of trials: {self._config.optuna_max_trials} (optuna_max_trials)"
)
max_configs_to_search = self._config.optuna_max_trials
else:
Expand All @@ -252,6 +260,71 @@ def _decide_between_percentage_and_trial_count(
logger.info("")
return max_configs_to_search

def _determine_minimum_number_of_configs_to_search(self) -> int:
min_trials_based_on_percentage_of_search_space = (
self._determine_trials_based_on_min_percentage_of_search_space()
)

min_configs_to_search = self._decide_min_between_percentage_and_trial_count(
min_trials_based_on_percentage_of_search_space
)

return min_configs_to_search

def _determine_trials_based_on_min_percentage_of_search_space(self) -> int:
total_num_of_possible_configs = (
self._search_parameters.number_of_total_possible_configurations()
)
min_trials_based_on_percentage_of_search_space = int(
total_num_of_possible_configs
* self._config.min_percentage_of_search_space
/ 100
)

return min_trials_based_on_percentage_of_search_space

def _decide_min_between_percentage_and_trial_count(
self, min_trials_based_on_percentage_of_search_space: int
) -> int:
# By default we will search based on percentage of search space
# If the user specifies a number of trials we will use that instead
# If both are specified we will use the larger number
min_trials_set_by_user = self._config.get_config()[
"optuna_min_trials"
].is_set_by_user()
min_percentage_set_by_user = self._config.get_config()[
"min_percentage_of_search_space"
].is_set_by_user()

if min_trials_set_by_user and min_percentage_set_by_user:
if (
self._config.optuna_min_trials
> min_trials_based_on_percentage_of_search_space
):
logger.debug(
f"Minimum number of trials: {self._config.optuna_min_trials} (optuna_min_trials)"
)
min_configs_to_search = self._config.optuna_min_trials
else:
logger.debug(
f"Minimum number of trials: {min_trials_based_on_percentage_of_search_space} "
f"({self._config.min_percentage_of_search_space}% of search space)"
)
min_configs_to_search = min_trials_based_on_percentage_of_search_space
elif min_trials_set_by_user:
logger.debug(
f"Minimum number of trials: {self._config.optuna_min_trials} (optuna_min_trials)"
)
min_configs_to_search = self._config.optuna_min_trials
else:
logger.debug(
f"Minimum number of trials: {min_trials_based_on_percentage_of_search_space} "
f"({self._config.min_percentage_of_search_space}% of search space)"
)
min_configs_to_search = min_trials_based_on_percentage_of_search_space

return min_configs_to_search

def _create_trial_objectives(self, trial: optuna.Trial) -> TrialObjectives:
trial_objectives: TrialObjectives = {}
for parameter_name in OptunaRunConfigGenerator.optuna_parameter_list:
Expand Down Expand Up @@ -464,6 +537,19 @@ def _create_perf_analyzer_config(
perf_analyzer_config.update_config(model.perf_analyzer_flags())
return perf_analyzer_config

def _should_terminate_early(
self, min_configs_to_search: int, trial_number: int
) -> bool:
number_of_trials_since_best = trial_number - self._best_trial_number # type: ignore
if trial_number + 1 < min_configs_to_search:
should_terminate_early = False
elif number_of_trials_since_best >= self._config.optuna_early_exit_threshold:
should_terminate_early = True
else:
should_terminate_early = False

return should_terminate_early

def _print_debug_search_space_info(self) -> None:
logger.info("")
logger.debug(
Expand Down
10 changes: 10 additions & 0 deletions model_analyzer/config/input/config_command_profile.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@
DEFAULT_OFFLINE_PLOTS,
DEFAULT_ONLINE_OBJECTIVES,
DEFAULT_ONLINE_PLOTS,
DEFAULT_OPTUNA_EARLY_EXIT_THRESHOLD,
DEFAULT_OPTUNA_MAX_PERCENTAGE_OF_SEARCH_SPACE,
DEFAULT_OPTUNA_MAX_TRIALS,
DEFAULT_OPTUNA_MIN_PERCENTAGE_OF_SEARCH_SPACE,
Expand Down Expand Up @@ -957,6 +958,15 @@ def _add_run_search_configs(self):
description="Maximum number of trials to profile when using Optuna",
)
)
self._add_config(
ConfigField(
"optuna_early_exit_threshold",
flags=["--optuna_early_exit_threshold"],
field_type=ConfigPrimitive(int),
default_value=DEFAULT_OPTUNA_EARLY_EXIT_THRESHOLD,
description="Number of trials to attempt before triggering early exit when using Optuna",
tgerdesnv marked this conversation as resolved.
Show resolved Hide resolved
)
)
self._add_config(
ConfigField(
"use_concurrency_formula",
Expand Down
1 change: 1 addition & 0 deletions model_analyzer/config/input/config_defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@
DEFAULT_OPTUNA_MAX_PERCENTAGE_OF_SEARCH_SPACE = 10
DEFAULT_OPTUNA_MIN_TRIALS = 20
DEFAULT_OPTUNA_MAX_TRIALS = 200
DEFAULT_OPTUNA_EARLY_EXIT_THRESHOLD = 10
DEFAULT_USE_CONCURRENCY_FORMULA = False
DEFAULT_REQUEST_RATE_SEARCH_ENABLE = False
DEFAULT_TRITON_LAUNCH_MODE = "local"
Expand Down
1 change: 1 addition & 0 deletions tests/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def get_test_options():
OptionStruct("int", "profile", "--max_percentage_of_search_space", None, "5", "10"),
OptionStruct("int", "profile", "--optuna_min_trials", None, "10", "20"),
OptionStruct("int", "profile", "--optuna_max_trials", None, "5", "200"),
OptionStruct("int", "profile", "--optuna_early_exit_threshold", None, "5", "10"),
OptionStruct("float", "profile", "--monitoring-interval", "-i", "10.0", "1.0"),
OptionStruct("float", "profile", "--perf-analyzer-cpu-util", None, "10.0", str(psutil.cpu_count() * 80.0)),
OptionStruct("int", "profile", "--num-configs-per-model", None, "10", "3"),
Expand Down
50 changes: 49 additions & 1 deletion tests/test_optuna_run_config_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ def test_max_number_of_configs_to_search_count(self):

def test_max_number_of_configs_to_search_both(self):
"""
Test count based on specify both a count and percentage
Test max count based on specify both a count and percentage
"""
config = self._create_config(
additional_args=[
Expand All @@ -120,6 +120,54 @@ def test_max_number_of_configs_to_search_both(self):
# Since both are specified we will use the smaller of the two (3% of 120 = 3)
self.assertEquals(max_configs_to_search, 3)

def test_min_number_of_configs_to_search_percentage(self):
"""
Test percentage based min num of configs to search
"""
min_configs_to_search = (
self._rcg._determine_minimum_number_of_configs_to_search()
)

# Batch sizes (8) * Instance groups (5) * queue delays (3) = 120
# 5% of search space (120) = 6
self.assertEquals(min_configs_to_search, 6)

def test_min_number_of_configs_to_search_count(self):
"""
Test count based min num of configs to search
"""
config = self._create_config(additional_args=["--optuna_min_trials", "12"])

self._rcg._config = config

min_configs_to_search = (
self._rcg._determine_minimum_number_of_configs_to_search()
)

self.assertEquals(min_configs_to_search, 12)

def test_min_number_of_configs_to_search_both(self):
"""
Test min count based on specify both a count and percentage
"""
config = self._create_config(
additional_args=[
"--optuna_min_trials",
"6",
"--min_percentage_of_search_space",
"3",
]
)

self._rcg._config = config

min_configs_to_search = (
self._rcg._determine_minimum_number_of_configs_to_search()
)

# Since both are specified we will use the larger of the two (trials=6)
self.assertEquals(min_configs_to_search, 6)

def test_create_default_run_config(self):
"""
Test that a default run config is properly created
Expand Down
Loading