Skip to content

Commit

Permalink
Update README and versions for 1.37.0 / 24.02 (#824)
Browse files Browse the repository at this point in the history
  • Loading branch information
mc-nv committed Feb 29, 2024
1 parent 60813c1 commit 2fc289d
Show file tree
Hide file tree
Showing 10 changed files with 15 additions and 112 deletions.
4 changes: 2 additions & 2 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.

ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.01-py3
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.01-py3-sdk
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.02-py3
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.02-py3-sdk

ARG MODEL_ANALYZER_VERSION=1.38.0dev
ARG MODEL_ANALYZER_CONTAINER_VERSION=24.03dev
Expand Down
99 changes: 1 addition & 98 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,101 +19,4 @@ limitations under the License.
# Triton Model Analyzer

> [!Warning]
> ##### LATEST RELEASE
> You are currently on the `main` branch which tracks under-development progress towards the next release. <br>
> The latest release of the Triton Model Analyzer is 1.36.0 and is available on branch
> [r24.01](https://github.com/triton-inference-server/model_analyzer/tree/r24.01).

Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
<br><br>

# Features

### Search Modes

- [Quick Search](docs/config_search.md#quick-search-mode) will **sparsely** search the [Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
[Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
[Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups) spaces by utilizing a heuristic hill-climbing algorithm to help you quickly find a more optimal configuration

- [Automatic Brute Search](docs/config_search.md#automatic-brute-search) will **exhaustively** search the
[Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
[Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
[Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups)
parameters of your model configuration

- [Manual Brute Search](docs/config_search.md#manual-brute-search) allows you to create manual sweeps for every parameter that can be specified in the model configuration

### Model Types

- [Ensemble Model Search](docs/config_search.md#ensemble-model-search): Model Analyzer can help you find the optimal
settings when profiling an ensemble model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm

- [BLS Model Search](docs/config_search.md#bls-model-search): Model Analyzer can help you find the optimal
settings when profiling a BLS model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm

- [Multi-Model Search](docs/config_search.md#multi-model-search-mode): **EARLY ACCESS** - Model Analyzer can help you
find the optimal settings when profiling multiple concurrent models, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm

### Other Features

- [Detailed and summary reports](docs/report.md): Model Analyzer is able to generate
summarized and detailed reports that can help you better understand the trade-offs
between different model configurations that can be used for your model.

- [QoS Constraints](docs/config.md#constraint): Constraints can help you
filter out the Model Analyzer results based on your QoS requirements. For
example, you can specify a latency budget to filter out model configurations
that do not satisfy the specified latency threshold.
<br><br>

# Examples and Tutorials

### **Single Model**

See the [Single Model Quick Start](docs/quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple PyTorch model.

### **Multi Model**

See the [Multi-model Quick Start](docs/mm_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on two models running concurrently on the same GPU.

### **Ensemble Model**

See the [Ensemble Model Quick Start](docs/ensemble_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple Ensemble model.

### **BLS Model**

See the [BLS Model Quick Start](docs/bls_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple BLS model.
<br><br>

# Documentation

- [Installation](docs/install.md)
- [Model Analyzer CLI](docs/cli.md)
- [Launch Modes](docs/launch_modes.md)
- [Configuring Model Analyzer](docs/config.md)
- [Model Analyzer Metrics](docs/metrics.md)
- [Model Config Search](docs/config_search.md)
- [Checkpointing](docs/checkpoints.md)
- [Model Analyzer Reports](docs/report.md)
- [Deployment with Kubernetes](docs/kubernetes_deploy.md)
<br><br>

# Reporting problems, asking questions

We appreciate any feedback, questions or bug reporting regarding this
project. When help with code is needed, follow the process outlined in
the Stack Overflow (https://stackoverflow.com/help/mcve)
document. Ensure posted examples are:

- minimal – use as little code as possible that still produces the
same problem

- complete – provide all parts needed to reproduce the problem. Check
if you can strip external dependency and still show the problem. The
less time we spend on reproducing problems the more time we have to
fix it

- verifiable – test the code you're about to provide to make sure it
reproduces the problem. Remove all other problems that are not
related to your request/question.
> ##### THIS BRANCH IS UNDER ACTIVE DEVELOPMENT AND IS NOT READY FOR USE.
4 changes: 2 additions & 2 deletions docs/bls_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -59,7 +59,7 @@ docker run -it --gpus 1 \
--shm-size 2G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>
Expand Down
2 changes: 1 addition & 1 deletion docs/config.md
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ cpu_only_composing_models: <comma-delimited-string-list>
[ reload_model_disable: <bool> | default: false]
# Triton Docker image tag used when launching using Docker mode
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.01-py3 ]
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.02-py3 ]
# Triton Server HTTP endpoint url used by Model Analyzer client"
[ triton_http_endpoint: <string> | default: localhost:8000 ]
Expand Down
4 changes: 2 additions & 2 deletions docs/ensemble_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ mkdir examples/quick/ensemble_add_sub/1
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -65,7 +65,7 @@ docker run -it --gpus 1 \
--shm-size 1G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>
Expand Down
2 changes: 1 addition & 1 deletion docs/kubernetes_deploy.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ images:
triton:
image: nvcr.io/nvidia/tritonserver
tag: 24.01-py3
tag: 24.02-py3
```

The model analyzer executable uses the config file defined in `helm-chart/templates/config-map.yaml`. This config can be modified to supply arguments to model analyzer. Only the content under the `config.yaml` section of the file should be modified.
Expand Down
4 changes: 2 additions & 2 deletions docs/mm_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

## `Step 3:` Profile both models concurrently
Expand Down
4 changes: 2 additions & 2 deletions docs/quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```

## `Step 3:` Profile the `add_sub` model
Expand Down
2 changes: 1 addition & 1 deletion helm-chart/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,4 @@ images:

triton:
image: nvcr.io/nvidia/tritonserver
tag: 24.01-py3
tag: 24.02-py3
2 changes: 1 addition & 1 deletion model_analyzer/config/input/config_defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@
DEFAULT_RUN_CONFIG_PROFILE_MODELS_CONCURRENTLY_ENABLE = False
DEFAULT_REQUEST_RATE_SEARCH_ENABLE = False
DEFAULT_TRITON_LAUNCH_MODE = "local"
DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:24.01-py3"
DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:24.02-py3"
DEFAULT_TRITON_HTTP_ENDPOINT = "localhost:8000"
DEFAULT_TRITON_GRPC_ENDPOINT = "localhost:8001"
DEFAULT_TRITON_METRICS_URL = "http://localhost:8002/metrics"
Expand Down

0 comments on commit 2fc289d

Please sign in to comment.