-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
131 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import matplotlib.pyplot as plt | ||
import torch | ||
import torch.distributions | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.utils | ||
|
||
from afqinsight import AFQDataset | ||
from afqinsight.nn.utils import prep_pytorch_data | ||
|
||
torch.manual_seed(0) | ||
|
||
|
||
plt.rcParams["figure.dpi"] = 200 | ||
|
||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
|
||
|
||
class VariationalEncoder(nn.Module): | ||
def __init__(self, input_shape, latent_dims): | ||
super(VariationalEncoder, self).__init__() | ||
self.linear1 = nn.Linear(input_shape, 500) | ||
self.linear2 = nn.Linear(500, latent_dims) | ||
self.linear3 = nn.Linear(500, latent_dims) | ||
|
||
self.N = torch.distributions.Normal(0, 1) | ||
self.N.loc = self.N.loc.to(device) | ||
self.N.scale = self.N.scale.to(device) | ||
self.kl = 0 | ||
|
||
def forward(self, x): | ||
x = torch.flatten(x, start_dim=1) | ||
x = F.relu(self.linear1(x)) | ||
mu = self.linear2(x) | ||
sigma = torch.exp(self.linear3(x)) | ||
z = mu + sigma * self.N.sample(mu.shape) | ||
self.kl = (sigma**2 + mu**2 - torch.log(sigma) - 1 / 2).sum() | ||
return z | ||
|
||
|
||
class Decoder(nn.Module): | ||
def __init__(self, input_shape, latent_dims): | ||
super(Decoder, self).__init__() | ||
self.model = nn.Sequential( | ||
nn.Linear(latent_dims, 256), | ||
nn.ReLU(), | ||
nn.Linear(256, 500), | ||
nn.ReLU(), | ||
nn.Linear(500, input_shape), | ||
) | ||
|
||
def forward(self, z): | ||
batch_size = z.size(0) | ||
x = self.model(z) | ||
return x.view((batch_size, 48, 100)) | ||
|
||
|
||
class VariationalAutoencoder(nn.Module): | ||
def __init__(self, input_shape, latent_dims): | ||
super(VariationalAutoencoder, self).__init__() | ||
self.encoder = VariationalEncoder(input_shape, latent_dims) | ||
self.decoder = Decoder(input_shape, latent_dims) | ||
|
||
def forward(self, x): | ||
print(x.shape) | ||
z = self.encoder(x) | ||
print(z.shape) | ||
print(self.decoder(z).shape) | ||
return self.decoder(z) | ||
|
||
|
||
def train(autoencoder, data, epochs=20): | ||
opt = torch.optim.Adam(autoencoder.parameters()) | ||
for epoch in range(epochs): | ||
print(f"Epoch {epoch}") | ||
for x, y in data: | ||
print(y.shape) | ||
x = x.to(device) | ||
opt.zero_grad() | ||
x_hat = autoencoder(x) | ||
loss = ((x - x_hat) ** 2).sum() + autoencoder.encoder.kl | ||
loss.backward() | ||
opt.step() | ||
return autoencoder | ||
|
||
|
||
dataset = AFQDataset.from_study("hbn") | ||
torch_dataset, train_loader, test_loader, val_loader = prep_pytorch_data(dataset) | ||
gt_shape = torch_dataset[0][1].size()[0] | ||
sequence_length = torch_dataset[0][0].size()[0] # 48 | ||
in_channels = torch_dataset[0][0].size()[1] # 100 | ||
|
||
latent_dims = 2 # 2 dimension latent space, better for plotting? | ||
input_shape = sequence_length * in_channels | ||
|
||
vae = VariationalAutoencoder(input_shape, latent_dims).to(device) | ||
vae = train(vae, train_loader) | ||
|
||
|
||
def plot_latent(vautoencoder, data_loader, target_index, num_batches=100): | ||
plt.figure(figsize=(8, 6)) | ||
|
||
for i, (x, y) in enumerate(data_loader): | ||
print(x.shape, y.shape) | ||
z = vautoencoder.encoder(x.to(device)).to("cpu").detach().numpy() | ||
print("Latent space shape:", z.shape) | ||
|
||
target = y[:, target_index].to("cpu").numpy() | ||
print("Target column:", target.shape) | ||
|
||
plt.scatter(z[:, 0], z[:, 1], c=target, cmap="viridis", alpha=0.5) | ||
|
||
if i >= num_batches: | ||
break | ||
|
||
plt.colorbar(label=f"Target: {target_index}") | ||
plt.xlabel("Latent Dimension 1") | ||
plt.ylabel("Latent Dimension 2") | ||
plt.title(f"Latent Space Visualization (Target Index: {target_index})") | ||
|
||
plt.show() | ||
|
||
|
||
# this gets column 1 of the target, which is age | ||
plot_latent(vae, train_loader, 0) | ||
|
||
# this should get column 2 of the target, which should be sex | ||
plot_latent(vae, train_loader, 1) | ||
|
||
# this should get column 3 of the target, which is scan site id | ||
plot_latent(vae, train_loader, 2) |