장면 분할, 분위기 검출, 가구 추천 모델 서빙 서버
-
python 3.8
-
[email protected]+cu113
tomorrow-zip-ai-server
|-- Dockerfile.template
|-- README.md
|-- bentofile.yaml
|-- model
| |-- __init__.py
| |-- classification
| | |-- checkpoints
| | | |-- saved_model.pb
| | | `-- variables
| | | |-- variables.data-00000-of-00001
| | | `-- variables.index
| | |-- classifier_bentoml_pack.py
| | `-- style_classifier_train.py
| |-- detection
| | |-- checkpoints
| | | |-- detector.config.py
| | | `-- mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco-panoptic_20220407_104949-d4919c44.pth
| | `-- mask2former_bentoml_pack.py
| `-- recommendation
| |-- checkpoints
| | |-- furniture_vector.pickle
| | `-- umap_model.sav
| |-- recommend-test.ipynb
| |-- recommender_bentoml_pack.py
| `-- recommender_furniture.py
|-- models.py
|-- processing.py
|-- runner
| |-- __init__.py
| |-- detector_runnable.py
| `-- recommender_runnable.py
`-- service.py
Make for Environments
pip install -r requirements.txt
Download bentoML Models from Google Drive and import it.
bentoml models import {model_to_import.bentomodel}
Let's build a system through BentoML
bentoml build
and RUN!
bentoml serve
after bentoml build, if you already build a project, you don't have to do it.
bentoml containerize tomorrow-zip-ai-api:latest -t tomorrow-zip-ai-api
Docker RUN
docker run -it --rm --name tomorrow-zip-ai-serving --gpus all -p 3000:3000 -p 3001:3001 tomorrow-zip-ai-api:latest serve
- N개의 모델을 한정된 자원에서 Serving이 가능하게
- 서로 다른 형식의 Model을 하나의 포맷으로 관리