Skip to content

Commit

Permalink
add swin backbones and support solider pretrain
Browse files Browse the repository at this point in the history
  • Loading branch information
XianzheXu committed Jul 21, 2023
1 parent 878eff1 commit 8052aba
Show file tree
Hide file tree
Showing 7 changed files with 1,925 additions and 263 deletions.
288 changes: 26 additions & 262 deletions README.md

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
_base_ = ['../../../../_base_/datasets/coco.py']
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=5, create_symlink=False)
evaluation = dict(interval=5, metric='mAP', save_best='AP')

optimizer = dict(
type='AdamW',
lr=1e-3,
betas=(0.9, 0.999),
weight_decay=0.01,
paramwise_cfg=dict(
custom_keys={'relative_position_bias_table': dict(decay_mult=0.)}))

optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=11710,
warmup_ratio=0.001,
step=[120, 150])
total_epochs = 160
log_config = dict(
interval=50, hooks=[
dict(type='TextLoggerHook'),
])

channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='TopDown',
pretrained='./pretrain_models/swin_base.pth',
backbone=dict(
type='SwinTransformer',
in_channels=3,
pretrain_img_size=224,
patch_size=4,
window_size=7,
embed_dims=128,
strides=(4, 2, 1, 1),
depths=(2, 2, 18, 2),
num_heads=(4, 8, 16, 32),
drop_path_rate=0.0,
drop_rate=0.0,
attn_drop_rate=0.0,
semantic_weight=0.8,),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=1024,
in_index=3,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=1,
num_deconv_kernels=(4, ),
num_deconv_filters=(256, ),
#in_index=-1,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_root = 'data/coco'
data_cfg = dict(
image_size=[288, 384],
heatmap_size=[72, 96], #[48, 64]
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=False,
det_bbox_thr=0.0,
bbox_file=f'{data_root}/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]

val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]

test_pipeline = val_pipeline

data = dict(
samples_per_gpu=12,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=12),
test_dataloader=dict(samples_per_gpu=12),
train=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline),
val=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
test=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
)

# fp16 settings
fp16 = dict(loss_scale='dynamic')
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
_base_ = ['../../../../_base_/datasets/coco.py']
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=5, create_symlink=False)
evaluation = dict(interval=5, metric='mAP', save_best='AP')

optimizer = dict(
type='AdamW',
lr=1e-3,
betas=(0.9, 0.999),
weight_decay=0.01,
paramwise_cfg=dict(
custom_keys={'relative_position_bias_table': dict(decay_mult=0.)}))

optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=11710,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=50, hooks=[
dict(type='TextLoggerHook'),
])

channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='TopDown',
pretrained='./pretrain_models/swin_small.pth',
backbone=dict(
type='SwinTransformer',
in_channels=3,
pretrain_img_size=224,
patch_size=4,
window_size=7,
embed_dims=96,
strides=(4, 2, 1, 1),
depths=(2, 2, 18, 2),
num_heads=(3, 6, 12, 24),
drop_path_rate=0.0,
drop_rate=0.0,
attn_drop_rate=0.0,
semantic_weight=0.8),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=768,
in_index=3,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=1,
num_deconv_kernels=(4, ),
num_deconv_filters=(256, ),
#in_index=-1,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_root = 'data/coco'
data_cfg = dict(
image_size=[288, 384],
heatmap_size=[72, 96], #[48, 64]
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=False,
det_bbox_thr=0.0,
bbox_file=f'{data_root}/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]

val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]

test_pipeline = val_pipeline

data = dict(
samples_per_gpu=8,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=8),
test_dataloader=dict(samples_per_gpu=8),
train=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline),
val=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
test=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
)

# fp16 settings
fp16 = dict(loss_scale='dynamic')
Loading

0 comments on commit 8052aba

Please sign in to comment.